unPAK: Phenotyping single gene knockout mutants UPAK in Arabidopsis thaliana

MATT T. RUTTER*1, COURTNEY J. MURREN*1, ALLAN E. STRAND*1, YANA WIECKOWSKI*1, HANNA VANN*†1, J. DRAKE BISHOP†2, CHRISTA CAPERTON†1, KATIE CROSS^{†1}, ALAN FISH^{†2}, THOMAS FUSSELL^{†1}, KATHERINE HANSLITS^{†3}, JAMES HUGHES^{†2}, KAROLINE LAKE^{†3}, SCOTT LANDRETH^{†1}, CHRISTIAN LEHMAN⁺², HENRY LOEHR⁺², ANNA MATTHEWS⁺¹, JULIA MARRS⁺³, JONATHAN PARK⁺², MADDIE PANTALENA⁺³, HSUAN PENG⁺³, THOMAS PITTMAN[†], MARCOS SCHÖNHOLZ[†], CAROLINE SHABO[†], COLLEEN STANCZYKIEWICZ[†], JEFFREY WAN[†], KAREN WOODS[†], KELLY O'DONNELL³, MICHAEL J. WOLYNIAK², HILARY CALLAHAN³

¹College of Charleston, Charleston, SC 29424, ²Barnard College New York, NY 10027, ³Hampden-Sydney College, Hampden Sydney, VA 23943

BACKGROUND:

• unPAK: <u>undergraduates Phenotyping Arabidopsis Knockouts</u>

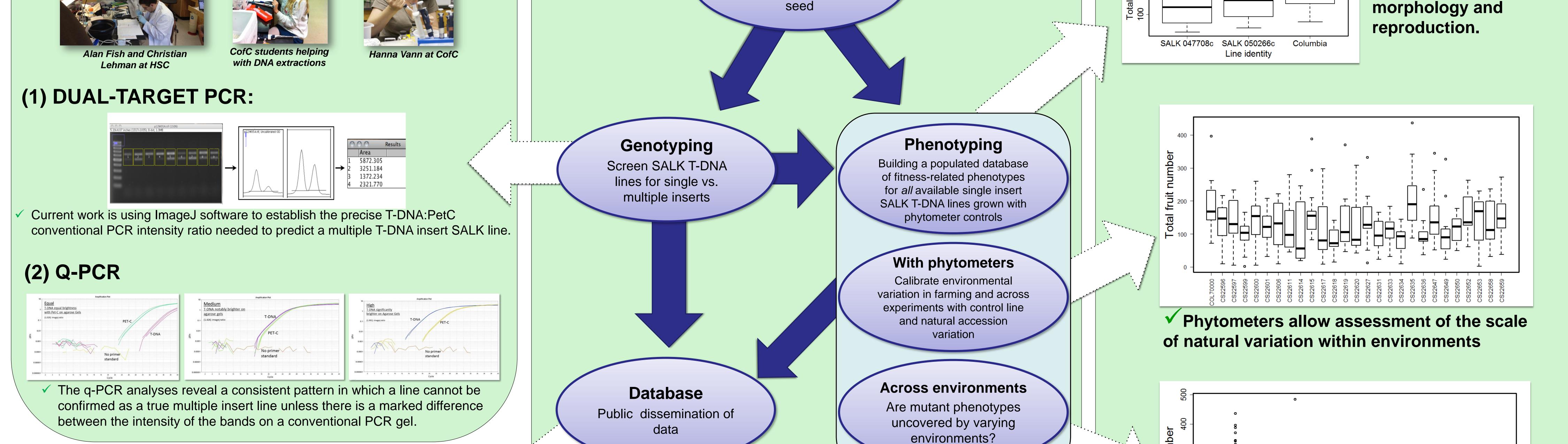
Fitness-related traits including:

• We have developed a large scale undergraduate-centered workflow to both genotype and assay fitness-related phenotypes in many A. thaliana knockout lines (SALK insertion lines)

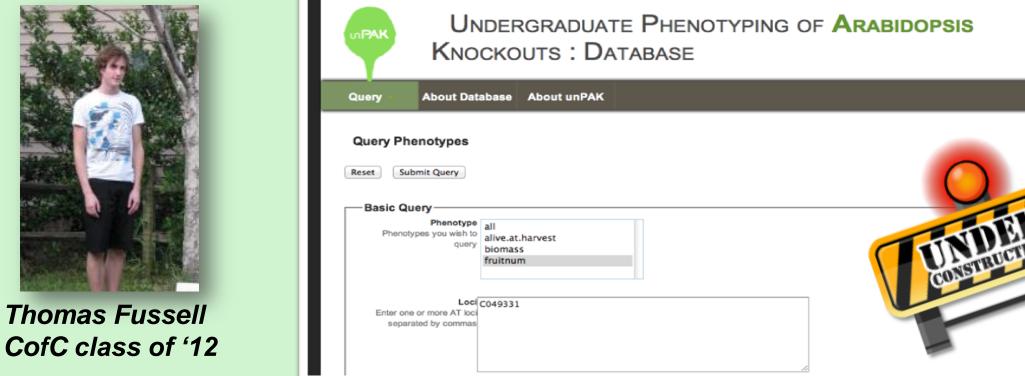
• Most studies of Arabidopsis thaliana knockouts mutants find no phenotype in the majority of lines (e.g. Kuromori *et al.* 2006)

• Explanations include: genetic redundancy, assay environment / trait / replication levels (Lloyd and Meinke 2012)

• germination success days to bolting • rosette and inflorescence size fruit (silique) production


> shortly after bolting with maturing siliques seedling

• Fitness measures for single gene knockouts in other organisms have been critical in examining problems of evolutionary genomics (e.g. in yeast: Hirsh and Fraser 2001)

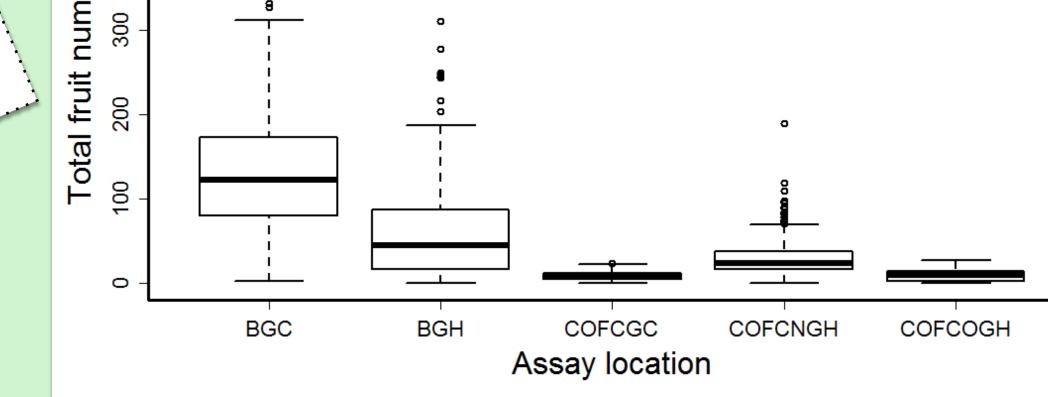

• More information is available on our website:

FARMING: PHENOTYPING: ✓ Thus far: More than 8000 plants grown at **SALK T-DNA Lines Natural Accessions &** College of Charleston and Barnard College for **Common Lab Lines** 1000s of T-DNA insertion development of seed stocks and leaf tissue for mutants at known loci From ABRC genotyping (O'Malley and Ecker 2010) ✓ Over 1000 Salk T-DNA lines • All in the 1001 genome Source: ABRC ✓ Over 100 phytometer lines project ✓ Goals: 3000+ Salk T-DNA lines Farming in the new greenhouse at CofC **College of Charleston labs** Barnard students phenotyping Barnard College lab plants **GENOTYPING:** *a two pronged approach* ✓ We can identify mutant Farming lines with phenotypes for Generate leaf tissue for germination, life history, genotyping and bulk

Data and metadata for genotypes and phenotypes will be made available in a public database

Acknowledgments and Notes:

We gratefully acknowledge the National Science Foundation (IOS: 1052262) for support.


We also acknowledge support from the College of Charleston Department of Biology; College of Charleston Provost's office; Barnard College Presidential Fellowship. Thanks also to greenhouse graduate student technicians at the College of Charleston and greenhouse staff at Barnard College.

Email senior investigators at: *rutterm*@cofc.edu; murrenc@cofc.edu; stranda@cofc.edu; wieckowskiym@cofc.edu; mwolyniak@hsc.edu; klo2108@columbia.edu; hcallahan@barnard.edu

Education

- Studying student research networks
- Bring research experience into the undergraduate classroom
- Podcasts of methods to share across institutions
- Cross-campus connections e-lab meetings via web2.0
- Undergraduate research apprenticeships
- Undergraduate co-authors denoted by †.

Phytometers reveal variation among environments: Location key: B = Barnard, COFC = College of Charleston, GC = Growth chamber, GH = Greenhouse (ground OGH and rooftop NGH at CofC)

References:

• Hirsh AE and Fraser HB. 2001. Protein dispensability and the rate of evolution. Nature 411:1046-1049. •Kuromori T, et al. 2006. A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant J. 47:640-651.

• Lloyd J and Meinke D. 2012. A comprehensive dataset of genes with a loss-of function mutant phenotype in Arabidopsis. Plant Phys. 158:1115-1129.

• O'Malley RC and Ecker JR. 2010. Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 61: 928-940.