
Schafer and Pengergrass

	
	

http://sciencejournal.hsc.edu	

Musical Rendering of Mathematical Objects

Erik A. Schafer and Marcus H. Pendergrass

Department of Mathematics and Computer Science, Hampden-Sydney College, Hampden-Sydney, VA
23943

This project explored methods of applying mathematics to the generation of music, and the methods for analyzing
music with mathematics. Music was generated randomly using Markov Chains, with specific start nodes, end
nodes, and lengths. We applied specific transition probabilities and were able to generate random melodies with
consistent and similar structures. Music was also generated deterministically using a binary operation across pitch
patterns called composition. We proved that the composition operation is associative. Green’s relations, a set of
equivalence relations that describe how a binary operation acts in a semigroup, were scrutinized. Finally, the
project has added to a software suite which produces and plays melodies utilizing these methods.

Musical Rendering of Mathematical Objects

Erik Schafer

March 16, 2012

Abstract

This project explored methods of applying mathematics to the generation of music, and the methods for analysing
music with mathematics. Music was generated randomly using Markov Chains, with specific start nodes, end nodes,
and lengths. We applied specific transition probabilities and were able to generate random melodies with consistent
and similar structures. Music was also generated deterministically using a binary operation across pitch patterns
called composition. We proved that the composition operation is associative. Green’s relations, a set of equivalence
relations that describe how a binary operation acts in a semigroup, were scrutinized. Finally, the project has added
to a software suite which produces and plays melodies utilizing these methods.

1 Introduction

This project explored methods to represent math-
ematical objects in a musical way. Two primary
approaches were used, a random method was devel-
oped using finite state graphs, and a deterministic
method was developed using a binary associative op-
eration defined across the set of all melodies.

The project developed a system to use Markov
Chains to generate melodies with specific constraints,
and a method to randomly select from those melodies.
In the development of this process, the concept of
Sparse Matrix Multiplication was created and used
to improve the efficiency of the algorithms. Further-
more, an algorithm was created which could find all
paths of a given start, end, and length through a
graph. Finally, algorithms were constructed which
could calculate the relative weight of a single path
among all paths of similar qualities.

In the exploration of deterministic generation the
operation of composition was examined. It was
proven that the binary operation across the set of
all melodies was associative. This allowed the set of
all melodies to be seen as a Semigroup. Finally, this
invited the analysis of Green’s Relations across the
semigroup. The result was that all of Green’s Rela-
tions were equivalent, and could be summarized using
the musical relation of Transposition.[2]

2 Random Methods of Gen-
erating Music

One part of this project is to generate music ran-
domly. The simplest conceivable way to do this would
be to generate entirely random numbers to represent
pitches and durations. An approach this simple, how-
ever, would produce uninteresting and insignificant
results. Instead, a method was sought which could
randomly generate a sequence of notes, albeit accord-
ing to a number of rules. These dependencies imbue

the result with a structure and order, necessary com-
ponents to prevent disorganized cacophony from re-
sulting. The rules determine the general qualities of
the music, while the individual notes are actually gen-
erated in a random way.

2.1 Graph-Based Methods

Graphs were the primary method used to generate
melodies randomly. For the purposes of the project,
graphs were seen as finite state chains, where num-
bered nodes linked to others along edges. A graph
can be either sparse or dense. A sparse connected
graph has many nodes with fewer edges, resulting
in a limited number of paths from point a to point
b. Conversely, a dense connected graph would have
many edges, and a great number of path options
from one node to another. This concept of nodes
with edges became the foundation of graph- based
music generation.

A melody taken from this graph would simply
be a sequence of numbers corresponding to ’visited’
nodes. To produce a melody, one would trace a path
of any length through the graph. Additionally, one
could trace all paths of a given length from a given
start node, or even from a given start node to an
end node. Each path, or list of integer node num-
bers, could then be indexed into a scale, and produce
a melody.[1] This project focused on calculating all
paths between two given points, and then selecting
between them.

Markov Chains allow the ordered-yet-random se-
lection of paths. A Markov Chain is just like a
graph, with numbered nodes and edges, but with one
distinct difference: edges are given ’weight’ values.
These weight values are used to calculate ’transition
probabilities’ by dividing all of the weights leaving
a node by their sum. For example, if a given node
has three edges leading away from it with weights
2, 7, 1 respectively, the probability of each transition
is the weight divided by the sum of the weights at

1

that node : .2, .7, .1. These transition probabilities
are in turn used to calculate the weight of each path.
An algorithm first finds all possible paths of a given
length from one node to another. Then, the probabil-
ities of each transition of a path are multiplied by one
another, presenting the ’path weight’. Finally, each
path weight is divided by the sum of path weights,
and the result becomes the path’s probability.[4]

The chain that this graph generates is represented
conceptually simply as a finite sequence of positive in-
tegers. In order to render the chain musically, it first
must be converted to notes. To do this, a sequence
of notes is generated (often according to a musical
scale) and each integer becomes an index into that
sequence. For instance the sequence 0, 1, 3, 2 applied
to a C-major pentatonic scale (C,D,E,G,A) would
result in the melody C,D,G,E. If the chain sequence
attempts to index a note not included in the scale,
it can either reflect or wrap. For example 0, 2, 8, 6, 3
indexed into C,D,E,G,A can become C,E,C,E,G
if ’reflecting’ or C,E,G,D,G if ’wrapping’. The dif-
ference in musical quality is not immediately evident.
Reflecting better emulates the actual composition
of music because it prevents large intervals between
notes from arising. When using large scales (i.e. a
major pentatonic scale that contains several octaves)
and wrapping around, a very high note could be found
adjacent to a series of lower notes, which would not
be musically pleasing.

Using the scale indexing Markov Chain graphs
can be much easier to understand conceptually. Con-
sider a random piano player Mr.Markov. Mr.Markov
first observes his piano keyboard and selects a subset
of the keys to be played. This is analogous to the
selection of a sequence of notes. Mr.Markov then
selects a first key to play, and begins to transition
randomly through his notes. According to his choice
of transition probabilities, he may only rarely tran-
sition from an A to a C (for instance), while almost
always following an F with a G. Every key he has
selected may be subject to similar rules. Finally,
Mr.Markov decides to finish his piece on a specific
note. This is a simplification of what the program
does to select a chain.

2.1.1 Sparse Matrices

All Markov Chain graphs can be represented using
a matrix ’A’. Ai,j represents the transition weight
from node i to j, with 0 representing no edge from
i to j. Nodes are indexed from 0 throughout. For
example, the matrix

1 9 0 0
0 0 7 3
0 0 0 2
6 4 0 0

represents the following graph:

Figure 1. A Markov Chain, with labelled nodes and
edge weights. Additionally, the width of the arrows

are scaled with respect to the weights.

Notice that most of the entries of the matrix are 0.
In order to prevent chaos in composition, and in order
to provide some structure to the melody, the graph
is sparse. This means that each node in the graph
has far fewer connections than possible. In order to
more efficiently handle these situations, graphs are
represented as two “sparse matrices” in the program.
Thus the above example is reduced to the ragged in-
dex array (left) and weight array (right). The value
of the index array represent the places the values of
the weight array would hold in a full matrix.

0 1
2 3
3
0 1

1 9
7 3
2
6 4

This saves memory space, but makes function han-
dling difficult, requiring a new version of matrix mul-
tiplication to be used. It is important to note that
every entry of the resulting matrix C is the sum of
the product of a unique row of A and column of B,
in other words ci,j = ai,∗ ∗ b∗,j .

The algorithm goes through all non-zero entries
in the first matrix, then finds any non-zero entries
in the second matrix that it would be multiplied by,
and adds the result to the corresponding entry of the
resulting matrix. Finally, the matrix is cropped and
put into sparse matrix form, if applicable.

Here is pseudo-code for the Sparse Matrix Multi-
ply Algorithm in the form A ∗B = C:

2

Sparse Matrix Multiply: A * B = C
FOR every row of A, (Ai)

FOR every nonzero entry of the row (Aij),
FOR every nonzero entry (Bjk)

MULTIPLY Aij and Bjk

STORE the result by adding it to Cik

END FOR
END FOR

END FOR
CONVERT C into a sparse matrix.

2.1.2 A Path Generation Algorithm

In order to randomly select a single path from a
graph, every path of a specified length, start, and
end node had to be calculated. One important fact
in the development of the algorithm which did this
was to note that the i, j entry of the transition matrix
to the nth represents the number of paths of length
n from node i to node j. Additionally, the i, j entry
of the weight matrix to the nth power is non-zero if
there is a path of length n from node i to node j.
The algorithm hinges upon this fact, using it to check
whether or not a given path is capable of reaching
the end node from a given position and length.

The getPaths algorithm uses a Java vector to pro-
cess the paths. Vectors allow elements to be removed,
processed and reinserted in a determined order. The
algorithm begins by initializing the vector to contain
paths of length two, starting at the start node, and
ending at any neighbouring nodes which have paths
linking them to the end node. Then each element in
the vector stack is processed, where each step adds
another vertex to the path. At each step as these
paths grow, all neighbours of the current last vertex
area analysed and checked. If it is found that they
may lead to the final vertex the extended path is
added back into the vector for an additional process-
ing pass. Finally, to save processing power, the final
vertex is blindly appended to every path.

Here is pseudo- code for the getPaths algorithm.
Let n represent the desired path length. Let i be the
desired start node. Let j be the desired end node. Let
A be the transition matrix.
To begin, initialize an array of all paths of length one
(two nodes) starting at i.

FOR each Path, starting at i, length 1, ending at
neighbouring node k

IF An−1
k,b 6= 0

INSERT the path into the vector
END IF

END FOR

FOR r starting at 0, as long as r < n − 2, add one
to r for each iteration. FOR each element of the
vector

REMOVE the path from the vector
CONSTRUCT an array of Paths extending

the current Path by 1
FOR each Path in the array, ending at

node k
IF An−r−3

k,b 6= 0
INSERT the path into the vector

END IF
END FOR

END FOR
END FOR

FOR each element of the vector
REMOVE the path from the vector
ADD b to the path
INSERT the path into the vector

END FOR

RETURN the vector converted to a Path array

3 Deterministic Methods of
Generating Music

One of the things that makes music pleasing is the
presence of symmetry, patterns, and self reference. In
order to capture these qualities a Composition opera-
tion was developed. It allows one or two sequences of
numbers (which as discussed earlier represent notes)
to produce a new sequence that contains self similar-
ity, producing a euphonic quality when indexed into
a scale. Furthermore this function when shown to
be associative allows sequences of notes to be viewed
through the lens of Semigroup Theory, a branch of
Abstract Algebra.[2]

3.1 Definition of Composition

We begin by defining the concept of a pitch pattern.
Intuitively, a pitch pattern is simply an ordered se-
quence of pitches, without reference to any rhythmic
relationships they might have. We focus on the case
in which the pitches come from a fixed scale, in which
case they can be represented by an integer index into
the sequence of notes making up the scale. Thus,
mathematically, a pitch pattern is simply a finite se-
quence of integers. Let S denote the set of all pitch
patterns:

S = {(a0, a1, a2, ..., an−1) : ai ∈ Z, n ∈ N}, (1)

Composition of pitch patterns is a binary operation
on S, such that the result consists of the concate-
nated results of the addition of each element of the
first sequence a in turn to every element of the second
series b. Letting ∗ denote the composition operator,
we have, for any a and b in S,

∗(a, b) ≡ ab = (a0 + b, a1 + b, ..., an−1 + b) (2)

Here, the addition of a scalar to a vector (e.g. a0 + b)
is component-wise, and the comma denotes the con-
catenation operation.

When two pitch patterns are composed together,
they produce a result that contains structures from
both operands. There exists a Macro structure to the

3

result, which mimics the intervals of the first operand.
The second structure is termed a Micro structure,
where the intervals of the second operand are copied
across the Macrostructure. As an examples, consider
ab, where a = (0, 1, 3, 2) and b = (3, 1, 5, 2).

Figure 2. A graph demonstrating composition.

As you can see the micro structure (black dots) are
copied and shifted according the the macro structure.

Each entry, abi, in the resulting series is a sum of
two specific entries of each operand. The entry of b
which is added “wraps” around (much like a clock)[5],
every |b|th entry, so we can say that the index of the
entry of b is r, where r is the integer remainder of the
division of the index of the result i and the length of b.
r is necessarily less than the length of b while being
greater than or equal to 0. Additionally, the index
of the entry of a which is added increments after ev-
ery |b| entries, being the integer quotient of i and the
length of b. The relationships are summarized as:??

abi = ar + bq

i = |b|q + r 0 ≤ r < |b|

The quotient q of the division of i and the length
of the second operand |b| is the entry of a , while the
remainder is the entry of b. This equation represents
the nature of the operation, where every b is copied
|a| times, and each segment of the series of length |b|
has a common an added to it.

3.2 Associativity

Theorem 1 (Associativity of Composition). The op-
eration of composition is associative on the set of all
pitch patterns

Proof. Let α, β, and γ be pitch patterns of length
m, n, and p respectively. Calculating the ith entry of
α(βγ), one finds that

(α(βγ))i = αq1 + βq2 + γr2 (3)

where the indices are nonnegative integers satisfying

i = q1np+ r1, 0 ≤ r1 < np (4)

r1 = q2p+ r2, 0 ≤ r2 < p (5)

Similarly the ith entry of (αβ)γ is

((αβ)γ)i = αq4 + βr4 + γr3 (6)

where

i = q3p+ r3, 0 ≤ r3 < p (7)

q3 = q4n+ r4, 0 ≤ r4 < n (8)

Note first that

r2 = (i mod np) mod p = i mod p = r3

so that the indices on γ are equal in equations (3) and
(6). Also, q3 is the number of p’s in i, which by (4)
equals the q1n plus the number of p’s in r1, i.e.

q3 = q1n+ q2 (9)

We claim that q2 = r4. From (8) and (9) it suffices to
show that q2 < n. But this follows directly from (4)
and (5). Now q1 = q4 follows from (8) and (9), and
we have shown that the indices on α, β, and γ are the
same in equations (3) and (6). Thus α(βγ) = (αβ)γ,
and composition is associative.

3.3 Green’s Relations

Green’s relations are a series of fundamental equiv-
alence relations defined in the field of semigroup
theory. There are five relations defined as Green’s
relations, named R,L,J ,H,D. For the definitions
of the relations, S1 is used to represent any monoid
semigroup, or in other words, any semigroup with an
identity element. Green’s relations utilize the con-
cept of an ideal. An ideal is a subsemigroup whose
elements map back into the subsemigroup under the
binary associative operation of the semigroup.[2]
Let Green’s R relation be defined as: aRb ⇐⇒
aS1 = bS1

Let Green’s L relation be defined as: aLb ⇐⇒
S1a = S1b
Let Green’s J relation be defined as: aJ b ⇐⇒
S1aS1 = S1bS1

Let Green’s H relation be defined as: aHb = R ∩ L
in other words if aRb and aLb then aHb
Let Green’s D relation be defined as: aDb ⇐⇒ ∃γ ∈
S1 : aLγ ∧ γRb

Before the relations are examined, it shall be
proven that R is an equivalence relation. The other
three relations all have trivially similar proofs for
equivalence, and shall be omitted from this paper. A
relation (∼) is considered an equivalence relation if it
satisfies the following properties:
1) Reflexive

a ∼ a ∀a
2) Symmetric

a ∼ b ⇐⇒ b ∼ a ∀a, b
3) Transitive

a ∼ b, b ∼ c ⇐⇒ a ∼ c ∀a, b, c

Proof. Let a, b, c ∈ S1

Suppose aRa. By the definition of R

aRa ⇐⇒ aS1 = aS1

Therefore, R satisfies the reflexive property.

Suppose aRb.

4

⇐⇒ aS1 = bS1

⇐⇒ bS1 = aS1

⇐⇒ bRa
Therefore, R satisfies the symmetric property.

Suppose aRb , bRc.
⇐⇒ aS1 = bS1 , bS1 = cS1

⇐⇒ aS1 = cS1

⇐⇒ aRc
Therefore, R satisfies the transitive property.

Since R satisfies the reflexive, symmetric, and tran-
sitive properties, R is an equivalence relation.

3.3.1 Examining Green’s Relations

On the semigroup of pitch patterns, it turns out
that all of Green’s relation’s can be reduced to the
idea of transposition. This is exciting because it re-
flects an already defined relationship in music. When
two pieces are said to be transpositionally related we
mean to say that they are identical if shifted linearly
up or down a scale. More formally, the transposition
relation T is defined by:

aT b if and only if b = k + a for some k ∈ Z.

(Recall that k + a means add k to each entry in a.)
Clearly T is an equivalence relation.

Theorem 2 (Green’s Relations on the Semigroup of
Pitch Patterns). All of Green’s Relations are equiv-
alent across pitch patterns, being summarized by the
relation of transposition, T .

R = L = H = J = D = T

Proof. Recall:

aRb ⇐⇒ ∀s1 ∈ S ∃s2 ∈ S : as1 = bs2

Given (0) = e ∈ S,
if s1 = e, or s2 = e then
a = bs2 or b = as1
Let |a| denote ”the length of a”
then
|a| = |b||s2| or |b| = |a||s1|
and by substitution |a| = |a||s1||s2| which simplifies
to

1 = |s1||s2|
Since 1 is its only factor, |s1|, |s2| = 1. Substituted
into |a| = |b||s2| we find that

|a| = |b|

Finally, noting that a = bs2 (if s1 = e) it can be
concluded that

a = (b0 + k, b1 + k, b2 + k, ..., bn−1 + k)k ∈ Z, n = |b|

and therefore aRb ⇐⇒ aT b

The proof that L = T is entirely analagous.

Recall:

aHb ⇐⇒ aRb ∧ aLb

It has been shown that aRb ⇐⇒ aT b ⇐⇒ aLb it
follows that aRb ⇐⇒ aLb ⇐⇒ aHb or simply

aHb ⇐⇒ aT b

Recall:

aDb ⇐⇒ ∃γ ∈ S : aLγ ∧ γRb

Given aRb ⇐⇒ aT b and aLb ⇐⇒ aT b the relation
D can be redefined as:

aDb ⇐⇒ ∃γ ∈ S : aT γ ∧ γT b

which is true by the transitive property of equivalence
relations, so it can be concluded that

aDb ⇐⇒ aT b

Recall:

aJ b ⇐⇒ ∀s1, s2 ∈ S1 ∃s3, s4 ∈ S1 : s1as2 = s3bs4

Given (0) = e ∈ S,
if s1 = e, and s2 = e then
a = s3bs4
and by the symmetric property, b = s1as2 Let |a| de-
note ”the length of a”
then
|a| = |s3||b||s4|
and |b| = |s1||a||s2|
and by substitution |a| = |s3||s1||a||s2||s4| which sim-
plifies to

1 = |s3||s1||s2||s4|

Since 1 has no factors, |s1|, |s2|, |s3|, s4| = 1. Substi-
tuted into |a| = |s3||b||s4| we find that

|a| = |b|

Finally, noting that a = s3bs4 (if s1, s2 = e) it can be
concluded that

a = (b0 + k, b1 + k, b2 + k, ..., bn−1 + k)k ∈ Z, n = |b|

and therefore aJ b ⇐⇒ aT b

5

4 Conclusion

This project succeeded in exploring methods to gen-
erate music by both deterministic and random pro-
cesses. It developed specific methods for the pro-
cessing the multiplication of large, sparse matrices.
This was used to expand the field of algorithmic
composition by allowing Markov Chains to generate
melodies of specific start and end states, as well as
specific length. Additionally, an operation was de-
fined which allowed the composition of melodies to
be seen as a purely mathematical process. Reducing
melodies to semigroups, the composition function al-
lowed Green’s relations to be observed. A theorem
was created which generalizes the meaning of Green’s
relations.

Future work can continue to expand the breadth
of the software suite, was well as the application of
the process developed in this project. Rhythms have
yet to be introduced to the algorithmic composition,
and could be generated and assigned by reapplying
Markov Chains or an operation similar to composition
to rhythms. Also, different combinations of the com-
position operation could be analysed, as well as dif-
ferent configurations of Markov Chains. For instance,
it has been observed that pitch patterns starting in
0 all have a similar musical quality, and appear to

have rhythms. There are surely many more general-
izations, both qualitative and quantitative, that could
be made from continued study and experimentation
with the structures that have been developed.

References

[1] Harkleroad, Leon. The math behind the music .
Cambridge: Cambridge University Press, 2006.
Print.

[2] Hollings, Christopher D. ”Some First Tantaliz-
ing Steps into Semigroup Theory.” Mathematics
Magazine 80.5 (Dec., 2007): 331-44. Print.

[3] ”Division Algorithm.” Wikipedia, the Free En-
cyclopedia. Web. 04 Sept. 2011.

<http://en.wikipedia.org/wiki/Division_algorithm>

[4] ”Markov Chain.” Wikipedia, the Free Encyclo-
pedia. Web. 04 Sept. 2011.

<http://en.wikipedia.org/wiki/Markov_chains>

[5] ”Mod – from Wolfram MathWorld.” Wolfram
MathWorld: The Web’s Most Extensive Mathe-
matics Resource. Web. 04 Sept. 2011.

<http://mathworld.wolfram.com/Mod.html>

6

	Schafer
	final

