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Abstract

We present some mathematical and computational means for producing and analysing novel sound synthesis
techniques in this paper. We first develop a new signal analysing method Instantaneous Frequency Spectrum which
decomposes a signal in a totally different way and sometimes it does better job than the Fourier transform for short
and fast changing signals. We then give and prove sufficient conditions of the phase modulated network, which
is an important approach for producing sounds. At last, we contribute a few examples and ideas for constructing
interesting sounds.

1 Introduction

The purpose of this research is to develop and ana-
lyze novel sound synthesis techniques by mathemat-
ical and computational means. Today, sound syn-
thesis has been applied to many different areas, but
most of those techniques are based on either digital
sampling technologies, or digital emulation of analog
synthesizer technologies, for instance, electronic key-
board, software GarageBand for Mac, iPod and iPad,
etc. These techniques certainly provide a rich sound
palette, but the increasing computational power of
personal computers opens up new possibilities for us-
ing more sophisticated mathematical techniques to
generate new and interesting sounds at home.

In this paper, we go over some classic methods for
signal analysing, like Fourier transform and Hilbert
Transform, and invent a new method called instan-
taneous frequency spectrum for some short and fast
changing signals. It involves some concepts and prop-
erties in probability theory and statistics. We also
study how the phase modulation effects the signal
waveforms, and we find sufficient conditions for a
unique solution to the phase modulation equations
in the special case of a cycle. We eventually pro-
vide a few ideas for constructing interesting sounds
and present some examples to reach the goal of this
project: applying mathematical techniques to study
and produce novel sounds.

2 Mathematical Approach

Since the research is to synthesise and analyse sound
mathematically, we basically apply following math-
ematical approaches: Fourier transform, cumulative
distribution function (CDF) & probability density
function (PDF), Hilbert transform, phase modula-
tion, and dynamical systems. We will make a brief
review for each of them next.

Approach 1. Fourier Transform
The Fourier transform is a widely used mathe-

matical tool that decomposes a signal into its con-

stituent frequencies. It is called the time domain rep-
resentation of the signal if the original signal depends
on time, while the Fourier transform depends on fre-
quency and so is called the frequency domain repre-
sentation of the signal. Let s(t) be a function of time
and S(f) be the The Fourier transform of s(t), then

S(f) =

∫ ∞
−∞

s(t)e−2πift dt,

where i is the imaginary number and e−2πift =
cos(2πft)− i sin(2πft). In the result section, we will
compute the Frourier transform by given a signal s(t)
very often.

Approach 2. CDF & PDF
In probability theory and statistics, the cumula-

tive distribution function (CDF) describes the proba-
bility that a real-valued variate X with a given prob-
ability distribution occuring at a value less than or
equal to x; It is defined as

F (x) = P (X ≤ x),

where the P (X ≤ x) is the probability that the vari-
ate X takes on a value less than or equal to x.

The CDF can be also defined in terms of its prob-
ability density function (PDF) f(u), as

F (x) =

∫ x

−∞
f(u) du,

if f is continuous at x. The PDF describes the rela-
tive possibility for that variate X to occur at a given
point (less than or equal to x). The PDF and CDF
give a complete description of the probability distri-
bution of a random variable. We will use CDF and
PDF to invent a new signal analysis method in the
result section.

Approach 3. Hilbert Transform
The Hilbert transform is a basic tool in Fourier

analysis. The difference between the Hilbert trans-
form and Fourier transform is that the Fourier trans-
form is a frequency domain representation of the sig-
nal, whereas the Hilbert transform is a time domain
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representation of the frequency. It is defined as

h(t) =

∫ ∞
−∞

H(f)e2πift ∂f ,

where H(f) = −isgn(f)S(f), S(f) is the Fourier
transform and sgn(f) is defined by

sgn(f) =


−1 f < 0

0 f = 0

1 f > 0.

We will use the Hilbert transform to help study
and analyse sounds. During the testing synthesis and
analysis, we sometimes use both Hilbert transform
and Fourier transform.

Approach 4. Phase Modulation

Phase modulation is the method we use for gen-
erating sounds. We define our signal by

s(t) = cos(2πf0t+ g(t)),

where f0 is the initial frequency and g(t) is a function
of time and it helps produce various waveforms. We
also design a type of structure called Phase Modu-
lated Network in the result section. The simple case
of the network is called Phase modulated Cycle. They
connect different notes together and all notes invlove
with others by some rules so that the network outputs
interesting sounds.

Approach 5. Dynamical Systems

For dynamical systems, we mainly study fixed
point and contraction mapping theorem and use them
to solve some problems occuring in constrcuting phase
modulated network. We will prove some conditions
for phase modulated network in the result section by
referring fixed point and contraction mapping theo-
rem.

3 Synthesis and Analysis of
Sound

Having all those approaches, we execute our ideas and
tests with Mathematica, Matlab, and Java. Math-
ematica is known for symbolic operation. Most of
our equations are derived from it. We also plot some
graphs with Mathematica because it presents general-
ity very well. Matlab is strong at numerical comput-
ing, so we run Matlab for most of complex Fourier
transforms and signal analysis. A lof of numerical
plot are also generated by Matlab and it helps us get
more details of some interesting sounds. We synthe-
sise all sounds by using Java. Designing phase modu-
lated network, composing music with newly generated
sounds, collaborating with Matlab for signal analysis,
all of them are operated in Java. We also use some
other softwares, such as SketchBook Pro, Pages, to
help explain some defintions and demonstrate our de-
signs.

4 Results

There are three subsections in the result part. We
will present our new signal analysis method Instan-
taneous Frequency Spectrum first; then we will prove
the conditions for the phase modulated network; fi-
nally we will show some interesting sounds that we
develop.

4.1 Instantaneous Frequency Spec-
trum

The Fourier transform is a fundamental and powerful
tool for signal analysing, however, it in some cases
cannot offer people an easily understandable result.
The Fourier analysis is a process that decompose the
orginal signal by infinite number of sine and cosine
functions. Due to the properties of sine and cosine,
the Fourier transform shows the probablities of all
frequencies that could restore that signal. Mathe-
matically, those frequencies make sense, but in real-
ity either some of them could not be heard by human
ears or they are not necessarily generated by the sig-
nal directly. The following three graphs of Frourier
transforms of three linear chirps can give a better
sense.

Let define the linear chirp first. Linear chirp’s
frequency is proportional to the time. Define F as
a function of time, frequency F (t) = rt + f0, where
r is the linear chirp rate, in Hertz per second, t is
the time, and f0 is the initial frequency. Then define
the signal of linear chirp by s(t) = sin(2πg(t)) where
g(t) =

∫
F (t) dt = 1

2
rt2 + f0t.

All three linear chirps start at 100 Hz. The first
one is f1 = 200t+100 Hz and we play it for 2 seconds;
the second is f2 = 2, 000t+ 100 Hz and it runs for 0.2
seconds; the third is f3 = 20, 000t + 100 Hz for 0.02
second. Technically they have same frequency range,
which is from 100 Hz to 500 Hz. All graphs are all
based on log10 scale.

Figure 1. f1 = 200t+ 100 Hz for 2 seconds.

The first Fourier transform shows that the fre-
quencies in range 100 Hz to 500 Hz pretty much con-
trol the signal. They have very high energy and the
frequencies that are under 100 Hz or above 500 Hz
can be almost ignored.
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Figure 2. f2 = 2, 000t + 100 Hz for 0.2 seconds,
f3 = 20, 000t+ 100 Hz for 0.02 seconds, respectively.

But if we cut down the durtion and increase the
rate of the linear chirp, we will observe that more fre-
quencies turn up outside of 100 Hz to 500 Hz. The
second and thrid Fourier transform show that the fre-
quency spectrum will become more slippery when the
signal runs in a short time or it changes fast.

Although the energies of those very low and high
frequencies are relatively small, sometimes people can
still get confused while they run Frouier analysis on
some instantaneously changing signals. Therefore, we
will provide another method for signal analysing: In-
stantaneous Frequency Spectrum. It effectively solves
the former problems and gives a clearer graph about
how exactly those frequencies compose the signal. We
will derive the general form first and then present
three examples (linear chirp, exponential chirp, and
sinusoldally modulated chirp).

4.1.1 General Form

Define W as a cumulative distribution function
(CDF) of signal energy with respect to the instanta-
neous frequency f , W (f) = the fraction of signal en-
ergy occuring at or below the instantaneous frequency
f . Also define F as a function of time t, the instan-
taneous frequency f = F (t). Assume for simplicity
that the instantaneous frequency is strictly increas-
ing with time. So W (f) represents the distribution of
the signal energy occurring when the instantaneous
frequency F (t) is less than or rqual to frequency f

W (f) =
EnergyF (t)≤f

Total Energy
(1)

If let s(t) represent the signal, where t is the time,

then the total energy is given by c
∫ T
0
s2(t) dt, where

c is a constant that depends on the units of measure-
ment. Without loss of generality, we assume the units
have been chosen so that c = 1. T is the duration of
the signal. Since T is a constant, the total energy
is also a constant. So we can simply mark the total
energy as ‖s‖2. Similarly, the EnergyF (t)≤f can be

written as
∫ tF (t)≤f
0 s2(t) dt, where tF (t)≤f is the mo-

ment when the instantaneous frequency F (t) = f . As
figure

Figure 3. The blue area is the total energy and the
blue stripe area is the EnergyF (t)≤f . Graph is gen-
erated by Mathematica and edited by SketchBookPro
and Keynote.

Here the t is a variable and it depends instan-
taneous frequency f , so we rewrite t as the inverse
function of F (t), which is

tF (t)=f = F−1
F (t)=f (f).

Thus, equation(1) becomes

W (f) =

∫ tF (t)=f

0 s2(t) dt∫ T
0
s2(t) dt

=

∫ F−1
F (t)=f

(f)

0 s2(t) dt

‖s‖2
. (2)

We then need to define P as a probability den-
sity function (PDF) of the instantaneous frequency
f , P (f) = the density of singal energy with respect
to the instantaneous frequency f . According to the
defintions in probability theory and statistics, PDF
is the derivative of CDF if PDF is continuous at f .
Therefore,

P (f) =
∂

∂f
W (f) =

1

‖s‖2
∂

∂f

∫ tf=fc

0

s2(t) dt.

Simplifies it, we get

P (f) =
s2(F−1

F (t)=f (f)) ∂
∂f
F−1
F (t)=f (f)

‖s‖2

or in another form

P (f) =
s2(t)

‖s‖2|F ′(t)|
,where t = F−1

F (t)=f (f)

(3)

Equation(3) is the instantaneous frequency spectrum
method for the simple case when the instantaneous
frequency is strictly increasing with time. To expand
it into a general form for any instantaneous frequen-
cies, we apply the same logic, as figure
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Figure 4. Figure. The blue area is the total energy
and the blue stripe area is the EnergyF (t)≤f . Graph
is generated by Mathematica and edited by Sketch-
BookPro and Keynote.

Now the instantaneous frequency F (t) can be any
functions of time, but the core idea is that we still
count the signal energy only when it is at or below
the instantaneous frequency f . Therefore, we can get
a new form of CDF

W (f) =

∫ T
0
s2(t)I(F (ti) ≤ f) dt∫ T

0
s2(t) dt

=
1

‖s‖2
∫ T

0

s2(t)I(F (ti) ≤ f) dt,

(4)

where I is function defined by

I(F (ti) ≤ f) =

{
1 if F (ti) ≤ f
0 otherwise.

(5)

We then take the derivative of the new CDF and get
the general formula of instantaneous frequency spec-
trum

P (f) =
1

‖s‖2
∑

t:F (t)=f

s2(t)

|F ′(t)| (6)

Finally, Equation(6) is the our new tool for signal
analysing. From the formula itself, we can see that
the new method is completely based on the instan-
taneous frequency. We will apply the instantaneous
frequency spectrum method to analyze three exam-
ples next.

4.1.2 Three Examples

Example 1. Linear Chirp

Based on same definition, the linear chirp on time
interval [0, T ] takes the form

s(t) =

{
sin(2πf0t+ πr2t) if t ∈ [0, T ]

0 otherwise.

Since the linear chirp is strictly increasing with
time, we can apply equation(3). Here the tF (t)=f =

F−1
F (t)=f (f) = f−f0

r
. Input F−1

F (t)=f (f) = f−f0
r

into

s(t) and then input s(t) into equation(3). We get the
instantaneous frequency spectrum of linear chirp on
[f0, f0 + rT ]

P (f) =
sin2[rπ( f−f0

r
)2 + 2πf0( f−f0

r
)] ∂
∂f

( f−f0
r

)

‖s‖2

=
sin2[π

r
(f2 − f2

0 )]

r‖s‖2

and the instantaneous frequency spectrum of linear
chirp for all f is

P (f) =

{
sin2[π

r
(f2−f20 )]

r‖s‖2 if f ∈ [f0, f0 + rT ]

0 otherwise.
(7)

Test equation(7) by the second linear chirp that
we mentioned at the beginning of the 4.1 section,
f2 = 2, 000t+ 100 Hz for 0.2 second, which runs in a
short time and the frequency changes very fast. We
get the following graph

Figure 5. The blue line is the Fourier transform and
the red line is the instantaneous frequency spectrum.
The range is based on Log scale. Simpling rate is
44,100 Hz. Graph is generated by Mathematica.

Through the graph, we can clearly see that there is no
frequency occur outside of 100Hz to 500 Hz and it fits
what people hear and understand very well. We can
also observe how exactly those frequencies distribute
into the signal. To show that point, we run both
Fourier analysis and instantaneous frequency analysis
again to test the third linear chirp f3 = 20, 000t+100
hz for 0.02 second, whose duration is shorter and
changing rate is extremely high. Here is what we
get

Figure 6. The blue line is the Fourier transform and
the red line is the instantaneous frequency spectrum.
The range is based on Log scale. Simpling rate is
44,100 Hz. Graph is generated by Mathematica.
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From this graph, we cannot really tell what the fre-
quency distribution is from the Fourier analysis, but
from the instantaneous frequency spectrum it is even
more conspicuous. For instance, we see that the en-
ergies of some frequencies around 170 ∼ 180 Hz,
220 ∼ 230 Hz, 260 ∼ 270 Hz, 300 Hz, and so on,
drop off to zero. That is exactly what happens when
we play a sine waveform with respect to a strictly in-
creasing frequency. The moment when the frequency
increases to some values, unfortunately the sine func-
tion just reach the zero point. So people will hear
nothing at that moment and certainly the frequency
there has zero energy. Although we can also see the
floating of energy distributed on each frequency from
the fourier transform graph, it is difficult to read more
details. Consequently, the linear chirp test proves
that the instantaneous frequency spectrum is good
for the short and severely changing signal.

Example 2. Exponential Chirp

Apply the instantaneous frequency spectrum to
the exponentical chirp. Let F (t) = 2rtf0, where r
is the chirp rate, in octave per second, t is the time,
and f0 is the initial frequency. The signal of the expo-
nentical chirp is defined by s(t) = sin(2πg(t)) where
g(t) =

∫
F (t) dt = f0

r ln 2
2rt. The linear chirp on time

interval [0, T ] takes the form

s(t) =

{
sin( πf0

r ln 2
21+rt) if t ∈ [0, rT ]

0 otherwise.

Same as the linear chirp, we can also use equa-
tion(3) for the exponential chirp because it is is rig-
orously increasing with time. Here we will apply the
second form. On the interval t ∈ [0, rT ],

tF (t)=f = F−1
F (t)=f (f) =

ln f − ln f0
r ln 2

and

|F ′(t)| = | ∂
∂t

(2rtf0)| = rf02rt ln 2 = rf ln 2.

Input tF (t)=f , |F ′(t)| and s(t) to equation(3). We
get the instantaneous frequency spectrum of the ex-
ponential chirp for all f

P (f) =

 sin2( 2fπ
r ln 2

)

rf ln 2‖s‖2 if f ∈ [f0, 2
rT f0]

0 otherwise.
(8)

Now we test equation(8) by two exponential
chirps. One is F (t) = 210t × 100 Hz, whose chirp
rate is 10 octaves per second and initial frequency is
100 Hz, and we play it for 0.2 second;

Figure 7. The blue line is the Fourier transform and
the red line is the instantaneous frequency spectrum.
Simpling rate is 44,100 Hz. The instantaneous fre-
quency spectrum graph is generated by Mathematica
and the Fourier transform is generated by Matlab.

the other is F (t) = 2100t × 100 Hz, whose chirp rate
is 100 octaves per second and initial frequency is 100
Hz, and we play it for 0.02 second.

Figure 8. The blue line is the Fourier transform and
the red line is the instantaneous frequency spectrum.
Simpling rate is 44,100 Hz. The instantaneous fre-
quency spectrum graph is generated by Mathematica
and the Fourier transform is generated by Matlab.

In the first graphs, the fourier transform and the
instantaneous frequency spectrum match pretty well.
There are some differences on two edges, but in gen-
eral we can see that the energy of frequency is de-
creasing with time because the frequency is increas-
ing faster and faster. The second graph shows us a
different story. We cannot tell at which frequencies
the chirp starts and ends from the fourier transform,
but the instantaneous frequency spectrum is still very
clear. Therefore, in the competition of exponential
chirp, the instantaneous frequency spectrum wins.

Example 3. Sinusoidally Modulated Chirp

The sinusoidally modulated chirp (sounds like a
siren sound) is the most interesting and demonstra-
ble example among all three. The frequency of the
chirp is defined by

F (t) = f0 + αfm cos(2πfmt),

where f0 is the initial frequency, t is the time, α is
the modulated weight (is the name right?), and fm is
the modulated frequency. The signal is defined by

s(t) = sin(2πg(t)) = sin(2πf0t+ α sin(2πfmt)),

where g(t) =
∫
F (t) dt = f0t+ α

2π
sin(2πfmt).

The frequency function tells us that the chirp runs
at a frequency that is based on a constant value float-
ing with a cosine function of time. Since the range of a
cosine function is finite for all t, the range of the siren
frequency is also finite no matter how long the signal
plays. Therefore, we can observe a significant signal
decomposing difference between the fourier transform
and instantaneous frequency spectrum. Because the
mathematics here is a little bit complicated, we could
not derive the symbolic formulas for both frourier
transform and instantaneous frequency spectrum. So
we will show the numerical result computed by Mat-
lab.

Let f0 = 100 Hz, α = 2, fm = 3 Hz, and the
duration T = 10 seconds. The result is
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Figure 9. The blue line is the Fourier transform and
the red line is the instantaneous frequency spectrum.
Simpling rate is 44,100 Hz. Graph is generated by
Matlab.

The graph displays two totally different views of
decomsposing signal. The instantaneous frequency
spectrum gives a continuous line from the moment
when the chirp starts to run to the time when it stops
to describe the distribution and changing of energy
on each frequency, but the fourier transform shows
all possible frequencies that it needs to restore the
original signal. Because F (t) = f0 + αfm cos(2πfmt)
and α = 2, fm = 3, the frequency range of this chirp
should be between 100 Hz − 2 × 3 Hz = 94 Hz to
100 Hz+2×3 Hz = 106 Hz. That is exactly what the
instantaneous frequency spectrum represents. The
fourier transform stands at another side this time.
Mathematically, we do can use all frequencies from
the fourier transform to reproduce the signal; how-
ever, not all of them can be heard or are useful for
our purpose. If we extends the interval and range of
our graph, we will see that there exist a lot of terri-
bly low and high frequencies at very low energy level,
which are not what we need.

As a result after three examples, the instantaneous
frequency spectrum gives us a new glasses when we
look inside a signal. Normally when we deal with
some very complex signals, the Frouier transform is
more useful than the instantaneous frequency spec-
trum because the latter is not good at decomposing
signals with multiple changing frequencies, but for a
short and simplex signal, the instantaneous frequency
spectrum can sometimes do better job.

4.2 Phase Modulated Networks

We will give and prove the conditions for the phase
modulated network in this section. We will start at
the simple case phase modulated cycle and then step
on to the general case phase modulated network.

4.2.1 Phase Modulated Cycles

A phase modulated cycle is a phase modulated net-
work in which the nodes are connected to form a sim-
ple cycle. As figure 10

Figure 10. A n-cycle’s network.

The network equations are given by

x1 = cos(2πf1t+ α1x2)

x2 = cos(2πf2t+ α2x3)

x3 = cos(2πf3t+ α3x4)

...

xn = cos(2πfnt+ αnx1) (9)

where f1, f2, f3, ..., fn and α1, α2, α3, ..., αn are
the frequencies and weights of each note, respectively.
Provided these equations have a solution, they define
x1, x2, x3, ..., xn as functions of time.

Phase modulated cycles can generate various
sounds based on any frequencies; however, there are
some constraints on the connction weights. During
the numerical test, some combinations of weights gave
a very chaotic kind of sound and frequency spec-
trum. For example, give a 2-cycle network and let
f1 = f2 = 1 Hz, α1 = α2 = 1.1, Sample rate
fs =44,100 Hz. Playing the sound for 4 seconds, the
result shows

Figure 11. Chaotic 2-cycle sound spectrum fre-
quency spectrum.

The sound spectrum reveals that this 2-cycle network
generates extremely high frequencies periodically and
the frequency spectrum gives the value of that strange
high frequencies, 22050 Hz, which is equal to half of
the sample rate. But according to Nyquist-Shannon
Sampling Theorem (need citation), 22,050 Hz is the
highest frequency that the sampling can get, but not
the exact real frequency that the 2-cycle network pro-
vides. The graphs simply show that when the weights
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are beyond some boundaries, the phase modulated
cycle will result in chaos.

Therefore, our main result in this section gives suf-
ficient conditions for the system of phase modulated
cycle to have a unique solution.

Theorem 1. In the phase modulated cycles, if the
product of the weights is less than 1 in modulus, then
the equations (9) has a unique solution for all t.

The proof of Throrem 1 depends on the following
two propositions, which concern fixed points. A point
x is called a fixed point of a function f if f(x) = x.
The following propositions give sufficient conditions
in order for a function f : R → R to have a unique
fixed point.

Proposition 1. Let I = [a, b] be an interval and let
f : I → I be continuous. Then f has at least one
fixed point in I.

Proposition 2. Let f : I → I and assume that
|f ′(x)| < 1 for all x in I. Then there exists a unique
fixed point in I.

For proofs of proposition 1 and 2, see [2], pages 13
and 14.

Proof. First consider a 1-cycle network. The equa-
tion for the waveform produced by the vertex is

x = cos(2πf0t+ αx) (10)

where f0 is a constant frequency and α is the weight
of loop at the vertex. We need to show that this equa-
tion has a solution for all t ∈ R, and that the solution
is unique. Define a function F by

F (x) = cos(2πf0t+ αx).

Any solution of equation (10) satisfies x = F (x). This
means that x is a fixed point of F . We need to prove
that F has a unique fixed point for each t ∈ R.

For x = F (x) = cos(2πf0t + αx), if x ∈ [−1, 1],
then F (x) = cos(2πf0t + αx) ∈ [−1, 1], so F maps
[-1,1] into itself; also F is already continuous. There-
fore, by Proposition (1), F has at least one fixed
point. To have a unique fiexed point of F by Propo-
sition (2), the derivative of F in absolute value has
to be less than one. The derivative of F in absolute
value is

|F ′(x)| = |−α sin(2πf0t+αx)| = |α|| sin(2πf0t+αx)|.

Since the maximum value of | sin(2πf0t + αx)| is 1
for all t, when |F ′(x)| = |α|| sin(2πf0t+ αx)| < 1, |α|
has to be less than 1. Therefore, if |α| < 1, F has a
unique fixed point.

The equations for the 2-cycle waveform are pro-
duced by

x1 = cos(2πf1t+ α1x2)

x2 = cos(2πf2t+ α2x1). (11)

To solve this system of equations (11), note that it
can be written as

x1 = cos(2πf1t+ α1 cos(2πf2t+ α2x1)) (12)

Define a function F1 that F1(x) = cos(2πf1t + α1x)
and a function F2 that F2(x) = cos(2πf2t + α2x).
Then any solutions of equations (11) satisfies x1 =
F1(F2(x1)), so x1 is a fixed point of F1(F2(x1)). We
want that F1(F2) has a unique fixed point for all t ∈ R
as well. Because F1(F2) is cosine function, obviously,
F1(F2) is continuous and if x ∈ [−1, 1], F1(F2) maps
[-1,1] into itself. By Proposition (1), therefore, F1(F2)
has at least one fixed point. The absolute value of the
derivative of F1 ◦ F2 is

| ∂
∂x1

[F1(F2(x1))]| =

|α1α2|| sin(2πf2t+ α2x1) sin(2πf1t+ α1F2(x1))|

Since the absolute value of sine function is always less
or equal to one, Proposition (2) implicts that the fixed
point of F1 ◦F2 is unique wherever |α1α2| is less than
1.

Finally, apply the same idea to the n-cycle case.
The n-cycle waveform is generated by equation (9).
Solve it by rewriting x1 by

x1 = cos(2πf1t+ α1 cos(2πf2t

+ α2 cos(2πf3t

+ α3(· · ·Fn(x1))))) (13)

Similar to the 2-cycle’s proof, define functions
F1(x) = cos(2πf1t+α1x), F2(x) = cos(2πf2t+α2x),
..., and Fn(x) = cos(2πfnt + αnx). Then any solu-
tions of the system of equations (13) satisfies x1 =
F1(F2(...(Fn(x1)))). Therefore x1 is a fixed point of
F1(F2(...(Fn))). Since F1(F2(...(Fn))) is still a cosine
function, it is continuous and maps [-1,1] into itself.
By Proposition (1), F1(F2(...(Fn))) has at least one
fixed point.

The derivative of F1(F2(...(Fn))) in modulus is the
product of all weights in modulus times the product
of n times of sine functions in modulus, like

| ∂
∂x1

[F1(F2(...(Fn)))]| = |α1α2α3 · · ·αn||O(x1)|

where |O(x1)| = | sin(2πfnt + αnx1) sin(2πfn−1t +
αn−1 cos(2πfn−2t + αn−2x1)) sin(· · · ) · · · sin(· · · )|.
There is no doubt that the absolute value of the
product of those sine functions cannot be greater
than one. By Proposition (2), therefore, for n-cycle
phase modulated cycles, if the product of all weights
in modulus |α1α2α3 · · ·αn| < 1, then the waveform
equations have a unique fixed point, which means the
phase modulated cycle network has a unique solution
for all t ∈ R.

As a comparison of the chaotic graphs, we change
that α1 = α2 = 1.1 to α1 = α2 = 0.99 to test our
theorem numerically. The result gives
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Figure 12. Figure. Normal 2-cycle sound spectrum
frequency spectrum.

which is very reasonable.

4.2.2 Phase Modulated Networks

For the general n-note phase modelated network, as
figure 13

Figure 13. PMNetwork.

each note connects itself and all others. The network
equations are given by

x1 = cos(2πf1t+ α11x1 + α21x2 + · · ·+ αn1xn)

x2 = cos(2πf2t+ α12x1 + α22x2 + · · ·+ αn2xn)

x3 = cos(2πf3t+ α13x1 + α23x2 + · · ·+ αn3xn)

...

xn = cos(2πfnt+ α1nx1 + α2nx2 + · · ·+ αnnxn).
(14)

Same as the phase modulated cycle, we need some
sufficient conditions to make sure that the system of
equations have a unique solution so that the network
will not show chaos. The approach is still related
to the fixed point. Since the weights of the general

n-note phase modulate network is a n× n matrix,
α11 α21 . . . αn1
α12 α22 . . . αn2
α13 α23 . . . αn3

...
...

. . .
...

α1n α2n . . . αnn


we will apply the Banach fixed point theorem (con-
traction mapping theorem).

Theorem 2. Let f : Rn → Rn be continuous and
x1, x2 ∈ Rn. If

‖F (x1)− F (x2)‖ ≤ K‖x1 − x2‖

where 0 ≤ K < 1, then F has a unique fixed point.

Define a function F by

F


x1
x2
x3
...
xn

 =


cos(2πf1t+ α11x1 + α21x2 + · · ·+ αn1xn)
cos(2πf2t+ α12x1 + α22x2 + · · ·+ αn2xn)
cos(2πf3t+ α13x1 + α23x2 + · · ·+ αn3xn)

...
cos(2πfnt+ α1nx1 + α2nx2 + · · ·+ αnnxn)


(15)

Banach fixed point theorem guarantees the exis-
tence and uniqueness of fixed point if we can find the
conditions on F so that there exists a K ∈ [0, 1) for
all x ∈ Rn.

To discover the conditions, we simplify F first.
We know the Jacobian matrix of a function describes
the orientation of a tangent plane to the function at
a given point. If p is a point in Rn and F is differ-
entiable at p, then derivative of F is given by JF (p).
In this way, the linear map described by JF (p) is the
best linear approximation of F near the point p, which
means

F (x) ≈ F (p) + JF (p)(x− p).

Therefore, if F : Rn → Rn is continuous and
x1, x2, p ∈ Rn, we can write

F (x1)− F (x2) ≈
JF (p)(x1 − p) + F (p)− JF (p)(x2 − p) + F (p)

= JF (p)(x1 − p)− JF (p)(x2 − p)
= JF (p)(x1 − x2) (16)

Based on Banach fixed point theorem

‖F (x1)− F (x2)‖ ≈ ‖JF (p)(x1 − x2)‖ ≤ K‖x1 − x2‖,

we have a conjecture.

Conjecture 1. If all singular values of the Jaco-
bian matrix of the n-note phase modulate network are
less than 1, σJF ∈ [0, 1), for all x1, x2, x3, · · · , xn ∈
[−1.1], then the system of the n-note phase modulated
network will have a unique solution for all t ∈ R.
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Since the Jacobian matrix of n×n system is huge,
its symbolic eigenvalue is difficult to compute. During
the research period we had only a conjecture, but no
proof. However, during the paper writting, Dr. Brain
Lins found a theorem in a math paper published in
1978 that could prove our conjecture is correct.

Theorem 3. Let (X, d) be a complete metric space
and g : (X, d) → (X, d) a local radical contraction.
Suppose for some x0 ∈ X the points x0 and g(x0) are
joined by a path of finite length. Then g has a unique
fixed point in X.

For the proof of theorem 3, see [3].

The proof of our conjecture requests some back-
ground in real analysis and matrix analysis. The basic
idea is to show that if all the singular values of the Ja-
cobian matrix are less than 1 for each x ∈ Xn, where
X = [−1, 1], then the function F is a local radical
contraction inside Xn. Since F involves with only
sine functions, it is obvious that x and F (x) is joined
by a path of finite length. Therefore, our conjecture
can be proved by the theorem. I will finish the proof
in the future.

4.3 Interesting Sound

As we talked about the phase modulated cycle and
network, in this section we will apply them to gener-
ate some interesting sounds. Different combinations
of frequencies can produce various sound effects. We
will present three examples. The first one is a simple
phase modulated cycle, but it sounds like an Oboe;
the second is a phase modulated network which teems
with changing tones; the last one is a composite of cy-
cle and network in which results a euphonious major
triad.

Example 1. Phase Modulated Cycle

We use 440 Hz as the basic frequency, 800 Hz,
1200 Hz, 1600 Hz, and 2800 Hz as harmonizing fre-
quencies. the connection and weights are as figure

Figure 14. Structure of “Oboe” sound

and intensity of each frequency that we play is 0.7,
0.6, 0.6, 0.25, and 0.05 (maximum intensity is 1), re-
spectively. Because high frequency is just for har-
momizing and 440 Hz is what we want to hear, we
play 2800 Hz weaklier and 440 Hz firmlier. We run
the sound for 6 seconds and plot its waveform versus
time and the Fourier transform to see the details of
the sound.

Figure 15. The first graph is the whole time domain
waveform. We add an envelope to make it sound na-
turelier. The second graph is the locally magnified
waveform from 1 second to 1.02 second. The third is
the frouier transform. Graph is generated by Matlab.

The Fourier transform shows that we can hear
clear frequencies 440 Hz, 800 Hz, 1200 Hz, weak 1600
Hz and very weak 2800 Hz. It is not easy to say ex-
actly how each frequency effect others at every single
second, but since all those harmomizing frequencies
are overtones, the final output has a clear, smooth,
and penetrating voice. Because it sounds simliar to an
oboe, we name this phase modulated cycle ”KeOboe”.

Example 2. Phase Modulated Network

In the first example, we know that some lucky
overtones can generate interesting sounds. We will
play with some ”little” frequencies in the phase mod-
ulated network example. We still set 440 Hz as our
basic frequency, but we add four ”little” frequencies
around the basic one, as figure

Figure 16. Structure of Phase Modulated Network’s
sound

The ”little” frequencies are 0.1 Hz, 0.5 Hz, 1 Hz, and
10 Hz. All their connection weights are 0.4. We turn
on only 440 Hz and turn off all four modulated fre-
quencies because they are too low to be heard by hu-
man ears anyway and we want to concentrate on how
those low frequencies change the sound. Here are the
wavefrom and Fourier transform graphs.
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Figure 17. Graph is generated by Matlab.

First of all, the signal gives a very funny looking
waveform. We can see that the volume and frequency
is changing all the time. We play only 440 Hz, but
the Frourier transform shows three different frequency
groups. Although the first one is so low that we can
not hear, it has very high energy. The energy of the
third group is not very high, but we can still hear a
little bit high frequency sound. We also find it is in-
teresting even for the 440 Hz group if we zoom in it,
as figure

Figure 18. The first graph is the locally magnified
waveform from 1.9 second to 2.2 second. The second
is the magnified 440 Hz group from frouier transform.
Graph is generated by Matlab.

We see that 390 Hz, 400 Hz, 410 Hz, 420 Hz exist in
the 440 Hz group, but the 440 Hz itself is not there
(too weak). We also zoom in the waveform and it is
still changing fancy.

This phase modulated network does not give an
agreeable voice, but it does generate a bizarre sound
by only four irrelevant low frequencies. Therefore,
this example offers us a way to decorate any normal
sounds.

Example 3. Composition

The last example will combine ideas from former
two: harmony and decoration. We call it ”KeMajor-
TriadC4”. As figure

Figure 19. Structure of KeMajorTriadC4

The top is a phase modulated cycle (triangle) with the
major chord C4, E4, and G4 (216.63 Hz, 329.63 Hz,
and 392 Hz, based on equal-tempered scale); the bot-
tom is same structure as the top, but their frequencies
are 1000 times smaller the the top. The bottom plays
the role of ”little” frequencies. We then connect the
bottom and the top to make a solid. Eventually put
an 1 Hz note at the center of the solid and connect
with every other notes. The waveform and Frourier
transform shows

Figure 20. Graph is generated by Matlab.

The waveform shows that it has a fantastically vari-
able sound. The Fourier transform gives three fre-
quency groups and all of them are harmonic. We can
also see how different frequencies contribute to the
sound: the low frequency group (0 ∼ 1 Hz) mainly
decorates the whole signal and makes it be full of
change; the major chord group (C4, E4, and G4)
lest the voice be musical; the high frequency group
(500 ∼ 800 Hz, actually they are double higher than
the major chord) has very low energy, but it is still
important because it adds more colorful elements to
the sound.

As a result, applying those constructing methods,
we can produce interesting sounds as many as we
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want. Sometimes, it is pleasurable to get both pretty
graphs and dulcet sounds.

5 Discussion and Future
Work

Due to the lack of enough mathematical skills and
knowledge, I was not able to finish some computing
and proofs during the research period. Some work re-
quested a lot of computer skills as well, but I did not
have enough ability to make programs to get exactly
what I want, so I got lots of helps from Dr. Pender-
grass for coding, especially for Java.

Generally, I finished my project as expected. I
got three main results and all of them are derived or
proved successfully. The contraction proof that I have
mentioned at the 4.2 section will be kept working. We
will also keep working and thinking some new designs
of constructing sounds so that we can get more pretty
graphs and sounds.

6 Conclusion

During this ten weeks’ project, we utilized the com-
puters and software that we have, and presented some
interesting ideas and sounds with our computers. Be-

sides, we provided our new signal analysis method In-
stantaneous Frequency Spectrum, and we proved the
sufficient conditions for the phase modulated network.
I got the taste of mathematical research and writing
and I also learnt many stuffs that I have never seen.
It was a fun but conscientious process. This project is
about math and sound, but I also read and researched
a lot of things about music, and realize how strong the
connections are between math and sound, math and
music. As I said, I will keep working and thinking
about this research since math and music are two of
the most magical objects in the world.
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