A Study of the Genetics of Arabidopsis thaliana and Saccharomyces cerevisiae

J. Drake Bishop and Michael J. Wolyniak

Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943

In this research project the genetics of two different organisms were studied in the context of two different projects. Different strains of *Arabidopsis thaliana*, which had been bred to a homozygous knockout state using T-DNA and crossing, were studied for frequency of genomic insertion by means of Q-PCR, quantitative dual-target PCR, and gel electrophoresis. Control samples of known insert frequency (provided by Virginia Tech) were analyzed using these methods, and their data was analyzed to provide a standard against which to compare the unknown samples. Dozens of plants were analyzed for genomic insert frequency and the data obtained was inserted into a spreadsheet so that the data can be further analyzed and shared with the UNPAK consortium.

Additionally, the genetics of *Saccharomyces cerevisiae* yeast were studied to determine the function of the *brr6* gene. Different strains of the yeast, which had different point mutations in the *brr6* gene, were studied under fluorescence microscope to determine the gene's effect on survival, division, and morphology. It was determined that the mutations that were studied had some impact on morphology, and that some did impact survival. In addition, some *brr6-1* mutants were transformed with a fluorescence-marked tubulin gene and frozen down for later study.

INTRODUCTION

Arabidopsis thaliana

Arabidopsis thaliana is a quickly growing flowering plant that serves as a model organism for many plant-based genetic research programs¹. A vast majority of the plant's genome has been annotated, and it has properties which make it an ideal model genetic organism, including fast growth, ease of care, prolific reproduction, and ease of genetic manipulation¹. The role of the H-SC researchers is to genotype the homozygous mutant SALK lines of A. thaliana. These mutants have had their DNA altered with target DNA inserts (T-DNA), and then bred to a homozygous knockout state. T-DNA is a segment of DNA which is randomly inserted into the genome of the plant. Its purpose is to disrupt a gene in that plant, and hopefully produce a phenotypic change. These changes can then be studied to determine the function of the altered gene. The DNA of these plants is isolated, and then the levels of T-DNA are compared to a target gene, in this case, PetC, to determine whether each line has no inserts, one insert, or multiple inserts. It is necessary to know which lines have multiple inserts, because if those plants show phenotypic changes, it will be impossible to know which disrupted gene is responsible for the changes. The levels of DNA are compared and analyzed using real-time PCR and QD-PCR with gel electrophoresis.

Saccharomyces cerevisiae

Saccharomyces cerevisiae, known by the common names of baker's yeast and brewer's yeast,

is a budding fungus that serves as a model organism for the study of genetics². These experiments focused on the function of the brr6 gene, which is important in the formation of nucleoporins. The goal of the research was to determine the role brr6 plays in cell morphology, survival, and division. This was accomplished by studying brr6 mutants with single point mutations. These mutants all involved the changing of a cysteine residue to another amino acid. Cysteine was chosen because it is believe to be important to brr6 localization and function. Table 1 shows all the mutants used, and how they were altered. Changing the cysteine to an arginine resulted is an opposite charge, whereas changing to a serine resulted in a charge neutralization.

 Table 1: Mutations and Alterations

Mutant	Residue Changed	New AA
#3	None	None
#8	96	Arginine
#11	96	Serine
#14	115	Arginine
#17	115	Serine
#20	118	Arginine
#23	118	Serine
#26	124	Arginine
#29	124	Serine

METHODS

Arabidopsis thaliana

The plants samples which were studied were either harvested and dried at another college in the consortium and sent to our lab, or they were grown from seeds in our lab. In order to study the genome of the plants for T-DNA insert frequency, the plants needed to be processed to isolate DNA. First a plant tissue sample was placed into an Eppendorf tube, and ground using a plastic pestle. The sample was then covered with 250 µL of "Short" buffer. "Short" buffer was produced by combining 12.5 mL of 0.5 M EDTA, 25 mL of 0.2 M Tris CI, 50 mL of 2 M LiCl, 2.5 g of SDS, and then diluting with DI water to a total volume of 250 mL. After addition of the buffer, the tissue was ground again. Following the second grind, 250 µL more "Short" buffer was added to the tube, and the sample was vortexed. The sample was then spun at 13,000 rpm for 10 minutes. Next, 400 µL of the supernatant was removed, added to 400 µL of isopropanol in a new tube, inverted to mix, and vortexed again at the same speed, for the same time. This spin settled the DNA from the sample on the wall of the tube. After spinning the supernatant was poured off. The DNA was then washed with 70% ethanol and spun again for 5 minutes. After washing the ethanol was poured off and the sample was allowed to dry. Finally the DNA was eluted in DI water and the sample was frozen at -20°C for future use.

After preparation the DNA samples were used for one of two experiments. In order to perform QD-PCR samples were prepared in thin walled PCR tubes. To each tube the following components were added: 10 uL Mean Green Master Mix. 4 uL DI water, 4 µL sample DNA, and 0.5 µL each of PetC upper primer, PetC lower primer, T-DNA upper primer, and T-DNA lower primer. The samples were then run in a PCR reaction for 27 cycles (the actual number of cycles varied from experiment to experiment, but 27 was found to be the ideal number of cycles after trial and error). After the PCR, gel electrophoresis was performed on the samples in order to separate the T-DNA from the reference gene (PetC). These gels were then photographed and the brightness of the bands was determined using ImageJ software and put into a Google Document to be shared with the other colleges in the consortium.

Some samples also went through a real-time PCR. These samples were prepared in a similar fashion to the QD-PCR, except each sample only got one set of primers (either T-DNA or PetC) and a different Master Mix was used. The samples were placed into a 96 well plate and run in a real-time PCR thermocycler. The computer then graphed out the reaction, and these graphs were compared and contrasted with the QD-PCR data. The purpose of the real-time PCR data is to serve as a comparison point for the visual data from the gel. That way the visual ratio obtained from the gels can be standardized with the actual levels of DNA in the samples.

Saccharomyces cerevisiae

The study of the *brr*6 gene began with several mutants that were prepared previously by the Dartmouth Medical School Cole Lab. Each of the mutants studied had a single mutation of one amino acid in the brr6 protein. In addition, each mutant also expressed green fluorescence protein (GFP) in the nuclear membrane. To begin each of the mutants was separately removed from its stock yeast peptone dextrose (YPD) plate and grown for varying times in SC liquid media which lacked leucine and contained dextrose. These mutants would only show their effects when grown in media containing dextrose (+dex) and lacking leucine (-leu). If grown on media containing galactose (+gal), the mutations would not reveal themselves. This is because the yeast contains two copies of the *brr*6 gene, but only one has been mutated. If grown on galactose, the normal copy of brr6 would overpower the mutant copy. By growing the yeast on dextrose, the normal copy of the gene is turned off. After growing the yeast were immobilized on agar slides and sealed with a molten solution containing equal parts of paraffin, Vaseline, and Ianolin. Some samples were also treated with a cell wall stain, which would appear blue under the fluorescence scope. The yeast were then observed under fluorescence microscope. They were compared with wild type yeast with GFP in the nuclear membrane to study any deformities.

In addition to the study of brr6 gene, a transformation experiment was also performed. In that procedure a *brr*6 mutant that was produced by Christian Lehman and Alan Fish was taken and plasmid transformed with containing а а fluorescently-labeled tubulin gene. This transformation was performed by adding 50 µL of yeast in media to tubes, then to each adding 5 µL salmon sperm DNA which had been denatured. Then 1 µL of the desired plasmid was added to each of three tubes, with a fourth left as a control. To each tube was added 300 µL of PEG/1xTE/1xLiAc solution. The cultures were then incubated without agitation for 30 minutes at 30°C, then for 20 minutes at 42°C. Next the samples were spun down briefly, and the supernatant removed. Finally the cells were resuspended in 100 µL DI water, and then plated on YP -leu +gal plates. After incubation the successful transformations were removed, grown up again in liquid media, and then mixed with 50% PEG and

frozen via submersion in liquid nitrogen for future study.

RESULTS

Arabidopsis thaliana

Among the plants that were tested this summer were six controls from VA Tech: *Columbia, Atpen1-1, Atpen1-2, Atpen1-3, B2/B3,* and *Jar1*. Each of these mutants had a known number of T-DNA inserts: *Col* with none, *B2/B3* with two, and the rest with one each. These plants were processed by the above described methods and run out on agarose gels. The following images were produced. The first image contains four experimental plants, which were not related to the VA Tech controls. Note that T-DNA is approximately 600 bp in size and *PetC* is 500 bp.

Fig 1. Sample 1

The second figure was produced using 27 cycles and its purpose was to redo the *B2/B3* control from above because the sample above lacked a T-DNA band, which means the above sample must have been damaged somehow, because it is known that *B2/B3* has two T-DNA inserts. For the redo four new *B2/B3* plants were selected and their leaves were processed as described in the "Methods" section (sample 2 was not used in the gel). Also in the gel are samples which had been previously processed through ImageJ software, with their theoretical brightness ratio in parentheses.

Fig 2. Sample 2

Additionally, *Col, Atpen1-1, B2/B3,* and *Jar1* were also put into a real time PCR reaction, to see actual DNA levels and compare them to the gel pictures. The purpose of the real-time experiments, both with these controls and the experimental plants, was to provide a certain and reliable comparison to the ratios of T-DNA to *PetC* in each sample. While this method is much more reliable than the gel method, it is much too expensive in terms of time, labor, and resources to use for every experimental plant. Therefore it is used to help perfect the gel method, which is a much more efficient way to study the experimental plants. Figures 3-6 (at end) show the real time graph.

These controls gave a clear picture as to what ratio of brightness should be observed in the gels. They also gave a clear image as to the relationship between what the real time data should look like compared to the T-DNA: PetC ratio. The data produced showed that twice the amount of T-DNA (meaning a double insert), appears as approximately a 1.2:1 ratio according to the ImageJ data. A single insert is an approximately a 0.95:1 ratio. While the data seems to suggest that 1.2 may be the minimum for declaring a sample as "multiple insert", the great variation in ImageJ data suggests that the method may be flawed. Further study is required of the gel pictures and ImageJ procedure to distinguish multiple inserts. The method and data, as they stand, are uncertain at best. The real time data, however, appears to be quite consistent. A single insert shows T-DNA appearing one cycle before the PetC. A double insert shows T-DNA and PetC appearing at the same time. The clarity and consistency of the data suggests that real-time PCR reactions may be much more reliable in determining the multiplicity of inserts in the experimental strains.

In addition to the above control, dozens of experimental plants with unknown numbers of inserts were studied, and the raw data produced was fed a Google Document Spreadsheet to be shared with the other researchers in the consortium. The data will be fully analyzed once a surefire system for classifying multiple inserts is established. The raw data from these plants is found in Table 2 (at end).

Saccharomyces cerevisiae

In addition to pictures, a mitotic survey was taken of several of the mutants. In these surveys the cells were counted and categorized to determine how division and survivability was affected (see Table 3). Table 4 only looked at the division of two other mutants, and whether or not the dividing daughter cells separated properly after division.

	Single & Normal	Dividing Normally	Morphology Altered	Nucleus Malformed	Abnormal Division	Failed Separation	Total	Notes
Nup-60 GFP 7/16/12								
Number	157	5	1	0	0	0	163	
Percentage	96.32%	3.07%	0.61%	0.00%	0.00%	0.00%	100.00%	
Nup60 GFP Brr6-1 7/16/12								
Number	21	4	2	41	5	72	145	
Percentage	14.48%	2.76%	1.38%	28.28%	3.45%	49.66%	100.00%	
Mutant #8 7/16/12								
Number	71	0	6	9	5	63	154	
Percentage	46.10%	0.00%	3.90%	5.84%	3.25%	40.91%	100.00%	
Mutant #14 2 hours 7/16/12								(Greater than 90% of cells were dead)
Number	8	0	0	0	0	0	8	
Percentage	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	
Mutant #17 7/16/12								(Greater than 50% of cells were dead)
Number	11	2	0	4	1	2	20	
Percentage	55.00%	10.00%	0.00%	20.00%	5.00%	10.00%	100.00%	

Table 2

	Single	One Bud	Clumps/ Chains	Total
Nup-60 GFP 7/25/12				
Number	130	65	52	247
Percentage	52.63%	26.32%	21.05%	100.00%
Nup60 GFP Brr6-1 7/25/12				
Number	81	84	82	247
Percentage	32.79%	34.01%	33.20%	100.00%

Table 3

Analysis

Arabidopsis thaliana

The data produced from the gels varied greatly in quality and consistency. Some plant samples were poorly preserved and therefore did not produce viable results. Additionally the quality and brightness of the gel pictures was extraordinarily difficult to reproduce consistently. These problems, combined with the uncertain accuracy and reliability of the ImageJ software, make it very difficult to rely on the brightness ratios to determine multiplicity of T-DNA inserts. Although reconciling this data with the real time graphs does help in clearing up some inconsistencies, it is still difficult to classify some of the plants. Repetition of trials and further comparison of gel data and Q-PCR data may allow these plants to be more easily classified in the future.

While the data from this project may not be as conclusive as would be hoped, it does show some significant trends. It revealed that a multiple insert will most likely not appear as a 2:1 insert, but can be as low as 1.2:1. Some examples that were

clearly multiple inserts, such as SALK_111268 have ratios ranging from 1.3 to 2.0 without background brightness removed, or from 1 to 3.6 with the background brightness removed. It does seem conclusive that anything above 1.5 can be considered a definite multiple insert. This conclusion comes from comparing the gel data to the real-time data of SALK_111268 and B2/B3.

It may be wise to learn more about the ImageJ software and figure out its limitations. It may be that nothing is wrong with the software: it may just be natural variations in the samples causing the disparity in the data. Trying out similar software may be worthwhile. Another problem is whether it is better to remove the background brightness or leave it. Data with the background left in appears to be more consistent and to have fewer errors. These are just some points that may be studied to make the data more consistent and reliable.

Saccharomyces cerevisiae

The brr6 mutants displayed varying levels of deformity. Yeast #3 contained no mutation, and served as a control. Mutant #8 showed deformity rates similar to the control, however it had a much higher rate of failed separation. Mutant #11 showed greater levels of morphology error, but the levels were not as high as *brr6-1*, which is a version which is known to be heavily deformed. Mutants #14, #17, #20, #23, and #26 showed very high rates of deformity and very low rates of survival. Even when grown on dextrose for as short a time as two hours. between 50% and 95% of these cells would die. Mutant #29 showed a similar level of deformity as Mutant #11. Overall these particular mutations to brr6 either produced minor morphological and mitotic errors or resulted in the death of the mutants. None of the mutants produced consistent error on a reasonable level without dying off.

Mutant	Effects	
	No effect. This brrb gene is the same as wild type, with the	
	addition	
#3	of the GFP. No defects were detected.	
	Slightly higher rates of morphology and nuclear envelop	
	formation error	
	were discovered. There was a very high rate of failed separation of	
#8	daughter cells (>40%).	
	Some instances of failed separation were observed. A great	
	majority	
#11	of the nuclei were malformed.	
	These cells were essentially unable to survive on dextrose. Greater	
	than	
	90% of the cells were dead, and the few survivors were severely	
#14	deformed.	
	These cells were essentially unable to survive on dextrose. Greater	
	than	
	50% of the cells were dead, and the survivors were severely	
#17	deformed.	~
	These cells showed few defects, but also suffered from very low	JE
	survival	
#20	rates.	
	These cells had a very poor survival rate and often failed to	
#23	separate. thefun	IC
	These cells had a very poor survival rate and also suffered from	Ŭ
#26	incomplete division.	
	These cells displayed some instances of failed separation and	
	some	
#29	morphological and nuclear malformation.	
	• •	

 $\label{eq:table_$

It seems that alterations made to residue positions 115 and 118 have a high probability of causing cell

death and high rates of deformity. For future study these cultures should be repeated and they should all be carefully counted to find exact rates of deformity. Time constraints only allowed a few of these mutants to be studied in that fashion.

Conclusion

Arabidopsis thaliana

The data produced during this research will serve to further the UNPAK program and will eventually lead to a fully annotated library of the *A*. *thaliana* genome. This will lead to a better understanding of plant genetics and may lead to great advancements in plant genetics and could result in the production of genetically superior crops. Cataloging these gene knockouts and their effects will greatly advance this project and is an important part of its fruition.

Saccharomyces cerevisiae

The study of the *brr6* mutants is important for understanding the mechanism by which yeast divide and reproduce. While it is known that *brr6* is involved in the production of nucleoporins, its exact role in that process is unknown. While these mutants

were not wholly successful, they were a step in the right direction. An ideal mutant would be one that produces an obvious morphological or mitotic change without compromising the life of the cell. This would allow the study of the brr6 protein and learn more about its function. However this experiment did demonstrate that whatever the exact role of *brr6* is, it is clear that it is critical to cell survival and reproduction, and that alteration of the gene can easily lead to the death of the mutant.

References

 National Institutes of Health (NIH). Arabidopsis. Web. 16 August 2012. < http://www.nih.gov/

cience/models/arabidopsis/index.html>

- 2. "Saccharomyces spp." Doctor Fungus. Web. 21 August 2012.
 - http://www.doctorfungus.org/

efung//Saccharomyces.php>

Supplemental Tables and Figures

								Ratio	
								m	Direct
	-	Botto	D I	0.41.17	-	Тор-	Bottom-	(minus	Ratio
	Band	m Band	nd	SALK	Tag Number	nd	Backgroun d	d)	n n n n n n n n n n n n n n n n n n n
7 3 12 ing	224.13	132.68	04 122	75753		130.003	29 540	3.3724091	1 680
7-5-12.jpg	231.13	2	54.155	10100		130.003	30.349	2.2101232	1.003
	6	157.5	96.65	75796		134.486	60.85	54	1.468
	232.36 4	117.95 5	96.517	75879		135.847	21.438	6.3367385 02	1.97
	131.5	98.273	97.3	75797		34.2	0.973	35.149023 64	1.338
	185.45 5	102.36 4	98.15	75841		87.305	4.214	20.717845 28	1.812
	127.86	139.36 4	100 467	75873		27 397	38 897	0.7043473	0.917
	102.31	105.90	100.407	10010		21.001	00.007	0.3764542	0.017
	8	9	100.15	111091		2.168	5.759	46	0.966
	9	6	101.6	111104		15.309	13.036	02	1.02
	230.86	151.95	404	444405		400.004	47.055	2.6454801	4 540
	4 185.18	5	104	111105		120.004	47.955	27.420046	1.519
	2	105.05	102.017	111140		83.165	3.033	16	1.763
								0.0247382	
7-5-12.jpg	56.947	76.974	56.439	111173		0.508	20.535	52	0.74
	57.211	57.789	54.193	111176		3.018	3.596	0.8392658 51	0.99
	137	82 211	63 228	111184		73 772	18 983	3.8862139 81	1 666
		02.211	00.220					0.4561557	
	74.421	84.921	65.614	111188		8.807	19.307	98 5 8/92903	0.876
	4	7	75.228	111268		178.456	30.509	73	2.399
	72.132	71.632	71.354	111270		0.778	0.278	2.7985611 51	1.007
	83.868	74.737	71.417	111271		12.451	3.32	3.7503012 05	1.122
	61,789	66.289	67.733	111281		-5.944	-1.444	4.1163434 9	0.932
								3.1466124	
	86.789	70.947	63.567	110906		23.222	7.38	66 9.3644314	1.223
	65.895	63.026	62.683	110928		3.212	0.343	87	1.046
		126 87		Columbi				0 0283441	
7-6-12.jpg	86.938	5	85.773	a		1.165	41.102	2	0.685
	139.75	110.25	87.227	At-pen 1-1		52.523	23.023	2.2813273 68	1.268
		158.31		At-pen		100		2.0923814	
	230.75	2	92	1-2 At-pen		138.75	66.312	69 3853.2727	1.458
	131.75	89.375	89.364	1-3		42.386	0.011	27	1.474
								- 0.0002192	
	89.938	167.5	89.955	B2/B3		-0.017	77.545	28	0.537
	90.812	134.87 5	89.924	Jar1		0.888	44.951	0.0197548 44	0.673
	94.5	212.25	91.955	Pot #10		2.545	120.295	0.0211563 24	0.445
	165.81	144.93	01	Bot #22		74 040	52 029	1.3869998	1 1 4 4
	∠ 230.06	o 122.56	31	POT #23	<u>├</u>	/4.812	ວ ა.ઝડర	09 4.2991652	1.144
	2	2	89.978	Pot #96		140.084	32.584	34	1.877
	230.43 8	129.56 2	89.156	Pot #98		141.282	40.406	3.4965599 17	1.779
	1		1	1					1

7-10-	230.81			B2/B3 Sample				0.9910578	
12top32cycles.jpg	2	232.25	71.438	1		159.374	160.812	81	0.994
	227.81 2	231.75	72.062	B2/B3 Sample 2		155.75	159.688	0.9753394 12	0.983
	229.62	231.12	75	B2/B3 Sample		454 625	456 495	0.9903923	0.004
	5 230.62	5 231.43	75	B2/B3 Sample		154.625	156.125	0.9948196	0.994
	5	8	74.5	4		156.125	156.938	1	0.996
	141.62 5	211.62 5	72.375	111104		69.25	139.25	0.4973070	0.669
	73.625	230.25	70	111104		3.625	160.25	05	0.32
	176.06 2	207.31 2	70.812	110906		105.25	136.5	0.7710622 71	0.849
	214.43	217.12	70 625	110006		142 042	146 5	0.9816587	0.000
	230.81	230.93	70.025	110300		143.013	140.5	0.9992170	0.966
	2	8	70	111268		160.812	160.938	9	0.999
	230.68 8	191.93 8	70.938	111268		159.75	121	1.3202479 34	1.202
7 10				B2/B2					
12bottom16cycles				Sample				- 0.2636575	
.jpg	87.528	94.583	89	1		-1.472	5.583	32	0.925
				B2/B3				-	
	89 722	91 722	90 778	Sample		-1 056	0 944	1.1186440	0 978
	00.722	51.722	50.170	E2/B3		-1.000	0.544	-	0.570
		101.30		Sample				0.2057179	
	92.028	6	93.611	3		-1.583	7.695	99	0.908
		109 19		B2/B3 Sample				- 0.1797818	
	92.972	4	95.444	4		-2.472	13.75	18	0.851
								1.3985611	
	93.667	93.944	94.639	111104		-0.972	-0.695	51	0.997
	93.306	94.611	95.028	111104		-1.722	-0.417	03 1 4950720	0.986
	93.5	94.806	97.444	110906		-3.944	-2.638	24	0.986
								1.4003601	
	93	93.667	95.333	110906		-2.333	-1.666	44	0.993
	92.222	95	93.806	111268		-1.584	1.194	- 1.3266331 66	0.971
								-	
	92,306	93,833	92,722	111268		-0.416	1.111	0.3744374 44	0.984
			V===			•••••			
				B2/B3					
7-11- 12ton22cyclos ing	223.91	190.66	65	Sample		159 017	125 667	1.2645881	1 174
12top32cycles.jpg	· ·	1	00	B2/B3		156.917	125.007	56	1.174
	228.83	206.16		Sample				1.1613238	
	3	7	65.667	3		163.166	140.5	43	1.11
	231 91			B2/B3 Sample				1 3353727	
	7	190.75	68	4		163.917	122.75	09	1.216
		224.08		At-pen				0.9372026	
	214.25	3	67.5	1-1		146.75	156.583	34	0.956
	7	7	66	111104		34.917	63.667	84	0.778
	137.83								
	3	193.5	64.667	75873		73.166	128.833	0.5679135	0.712
	129.16	125.33	64 333	110906		64 834	61	1.0628524	1 031
	122.66	-				0		2.3943465	
	7	89.667	66	75753		56.667	23.667	58	1.368

	230.58							1.1767525	ĺ
	3	206.25	68.583	Pot #96		162	137.667	99	1.118
	205.16	3	65	111268		140.167	94.083	1.4090220	1.29
7-11- 12bottom27cycles	224 18	154 15		B2/B3 Sample				1 8052617	
.jpg	8	6	67.188	1		157	86.968	05	1.454
	004.05	404.40		B2/B3				4 2004057	
	231.65	191.12 5	68	Sample 3		163.656	123.125	1.3291857	1.212
				B2/B3					
	231.43	210.06 2	68 281	Sample 4		163 157	141 781	1.1507677	1 102
	195.40	205.37	001201	At-pen				0.9274322	
	6	5	68	1-1		127.406	137.375	11	0.951
	1	9	66.375	111104		48.906	79.594	0.6144433	0.79
								0.6048584	
	82.312	93.438	65.281	75873		17.031	28.157	72	0.881
	6	79.5	65.438	110906		42.218	14.062	36	1.354
	203.46	164.62	67.024	75752		126 129	07 504	1.3980162	1 226
	231.34	224.12	07.031	15/55		130.430	37.334	1.0465366	1.230
	4	5	69	Pot #96		162.344	155.125	64	1.032
	215.15	108 75	67 031	111268		148 125	41 719	3.5505405 21	1 978
	ľ	100.10	01.001	111200		140.120	41.710	21	1.070
7-12-	114.07	124.71	74 400	440004		40.040	50.005	0.8002627	0.045
12_2/cycles.jpg	1	4	/1.429	110904		42.642	53.285	38	0.915
	106	83.714	70.286	110861		35.714	13.428	69	1.266
	200 5	95 296	71	110930		120 5	14 286	9.0648187	2 254
	118.28	05.200	71	110050		129.5	14.200	04	2.551
	6	108.5	71	110809		47.286	37.5	1.26096	1.09
	171	89.857	70.214	110714		100.786	19.643	5.1308863 21	1.903
								1.3520871	
	75.429	74.071	70.214	110713		5.215	3.857	14	1.018
	3	91.286	69.929	110696		52.214	21.357	29	1.338
	195.21	113.07	70	440004		402.044	44.074	3.0000243	4 700
	4 218.92	1	12	110691		123.214	41.071	48	1.726
	9	86.571	71.571	110684		147.358	15	67	2.529
	70 929	72 786	69 571	110610		1 358	3 215	0.4223950	0 974
	10.525	12.100	00.071			1.000	0.210	20	0.074
7-16-	20 475	20	20.775	440500		0.4	0.005	41.777777	4.240
12_2/cycles.jpg	38.175	29	28.775	110590		9.4	0.225	78 0.0957155	1.316
	39.025	88.625	33.775	110587		5.25	54.85	88	0.44
	37 875	39 425	36 725	110563		1 15	27	0.4259259	0.961
	01.010	33.420	50.725	110000		1.10	2.7	0.7072856	0.001
	65.675	77.025	38.25	110551		27.425	38.775	22	0.853
	167.95	69.025	49.225	110534		118.725	19.8	5.9962121 21	2.433
								0.8915304	
	55.525	57.35	40.525	110520		15	16.825	61 16 285714	0.968
	46	40.65	40.3	110440		5.7	0.35	29	1.132
	254.52	60 205	26.2F	110355		240 475	22.075	6.6163760	2 674
	5	03.325	30.35	110355		210.1/5	32.3/3	42	3.0/1
								•	
7-18-12top.ipa	58.143	56.964	57.107		178	1.036	-0.143	7.2447552 45	1.021

						1	2.6008403	
	65.107	63.964	63.25	179	1.857	0.714	36	1.018
	75.107	74.786	68.929	180	6.178	5.857	1.0546062	1.004
	1	1	72.536	181	181.285	181.285	1	1
	69.75	69.429	68.5	191	1.25	0.929	1.3455328 31	1.005
	234.92	96 179	67 607	192	167 322	28 572	5.8561528	2 4 4 3
	68.071	68.071	65.643	193	2.428	2.428	1	1
	95.75	70.536	66.429	196	29.321	4.107	7.1392744 1	1.357
	68.571	69.821	68.357	197	0.214	1.464	0.1461748 63	0.982
	72.321	73.25	64.393	209	7.928	8.857	0.8951112 11	0.987
							3.0604288	
7-18-12bottom.jpg	231	125.3	74	211	157	51.3	5	1.844
	231.23 3	171.63 3	76.467	212	154.766	95.166	1.6262740 89	1.347
	176.63	184.2	75.6	213	101 033	108.6	0.9303222 84	0 959
	229.83	185.96					1.4006027	
	3	7	76.467	214	153.366	109.5	4 3042564	1.236
	3	94.5	75	215	83.933	19.5	1	1.682
	3	89.1	74.133	216	124.7	14.967	92	2.232
	213.03 3	105.56 7	74.333	217	138.7	31.234	4.4406736 25	2.018
	96.8	93.467	73.533	218	23.267	19.934	1.1672017 66	1.036
	231.13		=				4.9988841	
	3	105.7	74.333	219	156.8	31.367	78	2.187
	226.3	3	75	226	151.3	25.533	26	2.251
7-23-12.ipg	119.03 8	99.346	68.423	221	50.615	30.923	1.6368075 54	1,198
	115.73 1	100.88	72 192	222	43 539	28 693	1.5174084	1 147
	232.92	135.03			101000	20.000	2.5480784	
	3	8	71.808	224	161.115	63.23	44	1.725
	1	225.5	73.5	225	84.731	152	89	0.702
	94.462	118.03 8	71.231	226	23.231	46.807	0.4963146 54	0.8
	253.96	120.69	72 769	227	191 103	47 923	3.7809193	2 104
	113.57	146.57	12.105	221	101.195	47.525	0.5688472	2.104
	7	7	70.038	228	43.539	76.539	54	0.775
	6	84.385	69.115	229	43.731	15.27	2.8638506 88	1.337
	252.34 6	108.76 9	70.846	230	181.5	37.923	4.7860137 65	2.32
	253.69	128.84	71 808	221	191 994	57 029	3.1888214	1 969
	2	0	71.000	231	101.004	57.036	07	1.909
7-27-12.jpg	31	31.267	32.4	232	-1.4	-1.133	1.2356575 46	0.991
	33.2	34.2	36.4	232	-3.2	-2.2	1.4545454 55	0 971
	36	35.733	36.533	234	-0.533	-0.8	0.66625	1.007
	41	42.6	49 933	236	-8 933	-7 333	1.2181917 36	0.962
		72.0			-0.000	1.000	2.8883333	5.002
	37.467	38.6	39.2	237	-1.733	-0.6	33 0 9922854	0.971
1	202.20			200	200.0	AV1.7	0.0022004	0.001

	7	7		1				39	1
	253.66							0.9965117	
	7	254.4	44.267		240	209.4	210.133	33	0.997
	56.867	41.067	38.467		241	18.4	2.6	7.0769230 77	1.385
	36.6	36 267	36.4		242	0.2	-0 133	- 1.5037593 98	1 009
	30.0	30.207	30.4		242	0.2	-0.155	1 0972933	1.005
	34.867	35.133	37.867		243	-3	-2.734	43	0.992

Table 2