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For our research, we derived an  equation of state for the white dwarf star from exterior to interior. We used 
Chandrasekhar Equation along with observational data for Sirius B. The results obtained from our equations predict 
the mass of Sirius B to be 2x1030kg, the internal temperature to be 3x107K, and the central density to be 
2.45x1010g/cm3. We then investigated the possibility of spontaneous magnetization following the work of Akheizer. 
Our results predict a maximum internal magnetization of  the order of 1013A/m. This result is in agreement with 
previous prediction with different approach. 

I. INTRODUCTION  
                                                 
The evolutionary  of  stars  generally  starts  with  the 
main  sequence  stars.  Main  sequence  stars  go 
through  nuclear  fusion  of  hydrogen  at  the  core  to 
generate  high  pressure  that  can  prevent  the  stars 
from collapsing by the gravity.  When the nuclear fu-
sion ends, main sequence stars with small mass pro-
ceed to a giant phase which fuses next level of the 
elements. When stars cannot continue their nuclear 
fusions,  their  outer layers explode.  After  the explo-
sion, stars become very dense and hot, and the rem-
nants of the giant stars are called white dwarf stars. 

A white dwarf star is a remnant of a red giant 
star which went through the hydrogen fusion and heli-
um fusion process. Hence in the composition of stars, 
we assume there will be almost no presence of Hy-
drogen and Helium, and most of the elements will be 
Carbon, Nitrogen, Oxygen, and some elements that 
are heavier. A white dwarf star starts of with very high 
temperature but for billions of years, it  cools down. 
Because a white  dwarf  starts  with small  radius,  its 
cooling  process takes tremendous amount  of  time. 
The cooling process comes from radiating the heat, 
and  because  there is no more fusion, or producing 
heat energy, the cooling process slows down gradu-
ally. A white dwarf star is believed white due to its col-
or  of  the  temperature  on  H-R  diagram.  However, 
most of the white dwarf stars have  the surface tem-
perature that is still hotter than that of the Sun , and 
as dense as 1.44 solar mass when the radius is only 
about the Earth’s radius. The mass and radius of a 
white dwarf star is found to be in inversely proportion-
al  relation,  in  another  words,  if  the  star  is  more 
massive,  then  the  radius  will  be  smaller.  In  other 
words,  the star  will  become more dense. However, 
the  mass  is  limited  up  to  1.4  solar  mass  by 
Chandrasekhar'  limit,  which  explains  that  after  1.4 
solar mass, the gravitational force will dominate the 
pressure generated by  relativistic, degenerate elec-
trons inside the white dwarf star, and the star will col-
lapse.  

The true mystery about these white stars is 
that many of white dwarf stars are founded to have 
magnetic fields around them, and some white dwarf 
stars have over 1 million Gauss, or 100 Tesla. The 
source of  the magnetization can be either external or 
the  spontaneous  magnetization,  but  the  accurate 
reason for the strong magnetization on white dwarf 
stars are still unexplained. However, we assume that 
some of these magnetization can be from spontan-
eous magnetization under certain conditions.

For many years, scientists predicted magnet-
ization  of  a  white  dwarf  with  different  approaches. 
Some scientists  predicted a white dwarf  to be in a 
LOFER(Landau Orbital  Ferromagnetic) state, or the 
electrons are in a balance state. Hyung Joon Lee, in 
his work,  predicted the magnetization to be 107G[1], 
and another study predicted 1013G[2] also under as-
sumption of a white dwarf being in  a LOFER state. 
However, other studies such as one by R.F.O' Con-
nell  and K.M.  Roussel[3] predicted that  only  certain 
white dwarfs can be accounted for the presence of 
magnetic  fields  because  a   LOFER  state  requires 
thermal equilibrium.    

If we assume that magnetization on a white 
dwarf  star  comes from spontaneous magnetization, 
we have to consider what forms spontaneous mag-
netization.  Spontaneous magnetization  comes from 
an  alignment  of  the  fermions,  electrons  with  other 
ions. Stern-Gerlach experiment proved that electrons 
have the intrinsic magnetic moments,  and are cap-
able of making  spontaneous magnetization due to an 
alignment  of  the  intrinsic  magnetic  moments.  The 
alignment  happens  in  the  quantum  energy  state 
called  degeneracy.  Fermions  have  ½  intrinsic  spin 
and when fermions become degenerate, according to 
their energy state, they move into each of the energy 
state.  However,  Pauli  Exclusion Principle limits that 
two electrons with the same set  of quantum numbers 
cannot exist next to each other, and multiple fermion 
state wave functions have to be anti-symmetric, and 
because of the anti-symmetric property if the space 
becomes anti-symmetric,  the  spins of  fermions  be-
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come symmetric  and  aligned.  Due  to  the  intrinsic 
magnetic moments in fermions, the alignment of spin 
generates  magnetization.  However,  the spatial  an-
ti-symmetric  that  causes the  magnetization  comes 
from the relativistic-degenerate electrons.

As we know that a white dwarf star is made 
up of  certain  elements like  Helium,  Carbon, Nitro-
gen, Oxygen  and  so on. Thus, we  also  know that 
the star has to electrons from these elements, and 
these  electrons  can  be  separated  into  to  phases: 
non-relativistic and relativistic. Non-relativistic mean-
ing the electrons are moving much less than speed 
of  light,  and  relativistic  meaning the  electrons  are 
moving close to  the speed of light.  However,  be-
cause of the hydrostatic equilibrium presenting in a 
white dwarf  star,  we have to  assume that  a white 
dwarf star is relativistic. 

Sirius B, one of the well known white dwarf 
stars, is an interesting star. Its mass is known to be 
close  to  one  solar  mass,  and  the  radius  is  about 
Earth's radius. We assumed the star to be relativistic 
and  degenerate  because  of  its  high  density  and 
pressure. With its accurately calculated radius and 
mass,  Sirius B is  our  perfect  example to  create  a 
magnetization model of white dwarf stars. In the next 
sections,  we will  discuss the important  theories to 
build  the model  for  magnetization  of  Sirius  B that 
shows how magnetization varies with the radius of 
the  star  using  the  models  for  mass,  density,  and 
temperature of the star approaching from the exteri-
or  to interior of the star. 

II. Theory                                                            

The relativistic movement of the electrons in 
Sirius B can be proved by the hydrostatic equilibrium 
of  the star. According to Newton's gravitational law, 
every object  with  mass has to  be affected  by the 
gravity. That is if the star is massive, the gravity is 
stronger,  and the star  has to be collapsed by the 
gravity  if  there  is  no  other  opposite  fore  that  is 
against it. Since Sirius B is a white dwarf star, the 
hydrogen fusion at the core has been stopped which 
makes the star unprotected from the center gravity. 
However, as we can observe, the star is untouched 
and stays in an equilibrium. This equilibrium is called 
hydrostatic equilibrium, and it forms by the pressure 
generated by the relativistic movement of the elec-
trons. Therefore Sirius B has to be relativistic.

The hydrostatic equilibrium then leads to a 
dimensionless  equation,  Lane  Emden  Equation[4]. 
We need a dimensionless system to avoid complex-
ity with the units in the equation. Lane Emden Equa-
tion assumes a star to be a completely degenerated 
star, and it gives a solution as pressure and density 

related to the radius by a polytrope equation. Poly-
trope  equation  can   be  applied  to  two  different 
phases, non-relativistic degenerate and ultra-relativ-
istic degenerate, and the gamma changes according 
to the phase by 5/3 for  non-relativistic degenerate 
state, and 4/3 for  ultra-relativistic degenerate state. 
However, the polytrope equation fails to be applied 
on a white dwarf star, because the equation has a 
condition that  the radius has to  be infinity.  By the 
Chandrasekhar's  limit   and other observations,  we 
know that white dwarf stars do not have infinite radi-
us. Polytrope equation is commonly used for gases 
not for solid objects like a white dwarf star. Thus, al-
though  Lame Emden Equation solves for the rela-
tion of the density and mass relatively to the radius 
of a star, however, the solution by a polytrope equa-
tion cannot be applied. Fortunately, there is another 
method  to  solve  Lame  Emden  Equation,  the 
Chandrasekhar's equation[5].

Chandrasekhar's  equation  comes  from 
Lame Emden equation as well. The difference from 
the polytrope equation is that Chandrasekhar uses 
different  symbols  for  ξ,  and  the  equation  actually 
works for a solid object. Even though,  the equation 
requires many substitutions to solve, once we con-
vert the equation into dimensionless method using 
dimensionless unit substitution, 
Chandrasekhar's equation gives the density model 
for a white dwarf star. From the density equation we 
can derive our final model  for mass of a white dwarf 
star.

To obtain actual calculated data, we will use 
Fortran. However, our final models  for density and 
mass uses derivatives, and Fortran does not support 
calculation of differential equation. Fortunately,  we 
can use the Euler's method to change the differential 
into differences. Thus, the differential equations be-
come multiple loops of calculation. With all the data 
points from Fortran calculation, we will get accurate 
graphs of  density  vs.  radius  and mass vs.  radius. 
And from those density and mass functions, we will 
get the temperature as a function of radius. 

Magnetization of a star comes from the in-
trinsic magnetic moments of the electrons inside the 
star. These magnetic moments are described in two 
states: spin  up and spin down. When these magnet-
ic moments are aligned, magnetization forms, and to 
be exact,  a  spontaneous magnetization is  formed. 
According  to  A.I.  Akheizer,  whether  the  magnetic 
moments are spin up or spin down,  magnetization 
can be expressed as the difference of the two Fermi-
Dirac  integrals.  Expanding  his  theory  and  dimen-
sionless  units,  we  should  be  able  to  express  the 
magnetization in terms of temperature.
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III. COMPUTATION      
              
F e−+F g=0  (1)

The derivation of the density model comes from the 
hydrostatic equilibrium equation (1). If  we let mass 
(M) as a function of radius(r), the mass becomes the 
integration from 0 to the radius of the surface area 
multiplied  by  the  density,  and  we  can   solve  the 
mass at any r. Thus, we have the mass equation (2).

M (r )=∫
0

r

ρ(r ' )4π r2dr ' , (2)

If we evaluate the hydrostatic equilibrium using the 
mass equation, we get 

dPe−

dr
dV=

−GM (r )dM
r2

, (3)

If  we substitute  the  M(r)  with  the  integration,  and 
then evaluate the equation further we get

1

r2

d
dr
(
r2

ρ
dP e−)=−4πG ρ , (4)

This equation is the base of Lame Emden Equation. 
However, we need to convert it to dimensionless us-
ing dimensionless method. For dimensionless meth-
od we will use substitutions as follow:
Ρ=Κργ

(5)

ρ=ρcθ
n  (6)

r=ξ a    (7)
For γ, we will assume our model, Sirius B, is in ultra-
relativistic regime, thus we will use 4/3.  For  ρc, we 
will  assume  that  the  critical  density  is  around 
2.45x1010g/cm3. To solve a , for r, we will use

a=√ (n+1)Pc
4πGρc

, (8)

where we will assume Pc, critical pressure, is about 
1017 atm. 
If we substitute these equations into (3), we will get 
Lame Emden Equation (9)

1

ξ2

d
d ξ

(ξ2 d θ
d ξ

)=−θn .  (9)

To solve for the Lame Emden equation, we will use 
Chandrasekhar's  equation  of  state  to  re-express 
equation (9) .

1
η2

d
d η

(η2 d ϕ
d η

)=−(ϕ2− 1
y0

2 )
3
2  (10)

Using  the  substitution  for  the  dimensionless 
method , the Chandrasekhar's equation becomes di-
mensionless. For substitution, we use

η=η1ξ .  (11)
The Chandrasekhar's equation becomes

d 2ϕ
d ξ2+

2
ξ
d ϕ
d ξ

=−η2(ϕ2− 1
y0

2 )
3
2 . (12)

where y0, we use

y0=((
ρc
β
)

2
3+1)

1
2 . (13)

In  the  equation  (2),  we  will  use  Chandrasekhar's 
equation for density (14)

ρ=ρc
y0

3

y0
2−13/2 (ϕ

2− 1
y0

2 )
3
2 . (14)

where ρc is 

ρc=βξ0
3 , (15)

where β is 

β=
8πm2c3μemH

3h3
, (16)

m=mass of the star, c=speed of light, μe=Bhor Mag-
neton, 
mH=mass of hydrogen atom, h=Plank constant 
where y0

2 is 

 y0
2=ξ0

2+1 . (17)

For r, in equation (2) 
r=η1α ,  (18)

where α is

α=( 2A
πG

)
1
2 1
β
((
ρc
β
)

2
3+1)

−1
2 ,  (19)

ρc=Critical density, G= Gravitational constant
where A is

A=
πm4 c5

3h3
.  (20)

Thus equation (2) becomes our equation for mass 
as a function of radius.

M=−4 πβ((
ρc
β
)

2
3+1)

3
2α2η1

2 d ϕ
d ξ

∣ξ=1 . (21)

Now we have mass and density as functions of radi-
us. These will help  to define temperature as a func-
tion of radius. Temperature can be expressed as a 
function of Luminosity. Since we know that temperat-
ure as a function of radius can be expressed as 

dT
dr

=
−3K cρ L

16πacR2T 3
. (22)

The luminosity of star is proportional to the mass of 
the star, thus L becomes
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dL
dr

=ϵ dM
dr

, (23)

where ε is 0.026 for Sirius B, and we can replace ρ 

with equation (14),  
dL
dr

with equation (21). Thus, 

the luminosity is  now expressed in terms of mass 
and radius. 
We  will  assume  a  white  dwarf  star  cools  itself 
through only conduction. Therefore, we will consider 
only the conduction opacity, Kc which tells us how 
well the energy can transfer inside the star. Kc is ex-
pressed as   

K c=
16σT 3

3ρχ
[6]   ,  (24)

where σ is a constant, 5.67x10-8, and χ is expressed 
as 

χ=
aρ K B

2 T

memH νee
,  (25)

where a=
π2

3
, KB is Boltzmann-constant, and υee 

is the electron-electron scattering. 
We  investigated  the  temperature  dependence  of 
electron-electron scattering and found the variation 
of temperature was minimum. Therefore, we assume 
υee  to be 1.6x1018.
With all the substitutions, we have the final model for 
our  temperature as a  function  of  radius.  Equation 
(22) becomes 

T=
3m emHM

4π2 K B
2 R2ρT

ϵ L☉
M ☉

. (26)

Now we have expressed mass, density, and temper-
ature  in  terms  of  radius.  With  theses  equations 
(6,7,9), we can develop a magnetization as a func-
tion  of  radius  using  the  fundamental  equation  of 
magnetization
M=μ(n↑−n↓) , (27)

where μ is magnetic moment, and  μ(n↑−n↓) is 
the difference between spin up and spin down states 
of electrons. 
Using  Akheizer's  general  approach[7] including  his 
definition  of  dimensionless  units  to  investigate  the 
magnetization of stellar interiors, we have extended 
his work into the ultra-relativistic regime which pro-
duces the following equation for the magnetization 

χ=τ3[ψ(z+)−ψ(z−)] , (28)

the  Fermi-Dirac  integral, 

ψ(z )=∫
0

∞ xndx
exp(x−z)+1

(29),  because  we  as-

sume Sirius  B to be  in  an ultra-relativistic regime, 

we will say n=2, and the integral becomes a  finite 
expansion  when  T→0.  Then,  ψ(z ) becomes 

ψ(z )= 1
3
( z3+π2 z ) [8]. (30)

For equation (11), χ can be also calculated as 

χ=
8α2ν3μBM

9πe
2m c2 ,  (31)

where  μB is  Bohr  Magneton  of  the   electron, 

α=
e2

ℏ c
(32),  and  ν= 1

μ0(χ+1)
γ2

μB
2 (33) 

where  χ  is  the  average  magnetic  susceptibility  of 
carbon, and we will use -2x105 . 

Also  z(±)  =  
β± x
τ

(34),   where 

β=
8α3ν3λe

3

9πme c
2 μ ' (35) and  μ '=μ−γ1 Ne (36) 

where μ=ϵF (1−
π2

3
(
K BT

ϵF
)

2

) . (37)

γ1 and γ2 are related to the repulsive and at-
tractive components of the potential energy. 
Between electrons, where γ1 is the potential en-

ergy of Coulombic Repulsion, and  γ2 is the po-

tential energy of spin-spin interaction.  γ1 can be 

expressed as γ1 = (1.21x10-11)3Ec, and γ2 can 

be written as γ2 =  (1.21x10-11)3Ess. 1.21x10-11  is 
the assumed mean free path which we will vary later. 
We will let Ec < Ess < 10Ec to see how magnetiza-
tion varies by the change of the potential energy of 
spin-spin interaction. We will  also let Ess to be al-
ways greater then Ec, and this is proved by the work 
of E.E Salpeter[9].    
τ can be expressed as a  function of temperature, 

and  it becomes  τ=
8α2 ν2

9πmec
2 T . (38)

When  we substitute z with equation (34), now we 
have 2 χ2=1+6β2−2 τ2 . (39) 
Transforming equation (39) back to our non-unitless 
system, we have magnetization as a function of radi-
us  which  is  equation  (40).

M=
μB
γ 2 √ 1

2
(

9π4me c
2μB

4

8α2 γ 2
2 )

2

+6μ ' 2−2K BT
2

(40)
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IV. RESULTS  AND  ANALYSIS   
   
Fig 1. Density vs.  Radius

Fig 2. Mass vs. Radius

Fig 3. Temperature vs. Radius

The result of our temperature model of Sirius 
B shows that at the core, the temperature is at the 
highest,  3x107K. Most  people  predicts  the  core of 
Sirius B to be around 107K to 108K. Hence,  our cal-
culation of the temperature of Sirius B is reasonable. 
As we go out to the surface of the temperature, we 
can  see  that  the  temperature  dramatically  drops 

down after we pass half of the radius. However, the 
temperature  never  reaches  0K,  or  absolute  zero, 
and  it is understandable that absolute zero is un-
achievable  by  a  star.  At  the  core,  the  graph  also 
proves that  Sirius B is  not  in  an isothermal  state, 
which also  proves  that  previous  theory  of  a  white 
star  being  non-degenerate  is  not  accurate  since 
non-degenerate  means  isothermal  at  the  core. 
Clearly,  temperature  is  varying   as  the  radius  is 
changing,  but  the  variation  of  temperature  at  the 
core is not big enough. As we assumed Sirius B to 
be in ultra-relativistic regime, we expected the tem-
perature variation at the core to be high, but the res-
ult opens to a possibility that Sirius B could be in rig-
orous-relativistic regime.   

Fig 2. Magnetization in variation of Couloumbic Po-
tential Energy (see last page)
Fig 3. Magnetization in variation of Spin-Spin Inter-
action Distance (see lastpage)

The result for magnetization came out to be order of 
1013A/m.  Other  approximations  by  different  ap-
proaches also predict magnetization of Sirius B to be 
around 1013A/m.  As The above graphs shows, at the 
surface of Sirius B, there is no magnetization, and 
we can assume that the surface of Sirius B is in non-
degenerate regime. The graphs also show the vari-
ation in magnetization by changing Ess, the potential 
energy of spin-spin interaction. The result is very in-
teresting. As we increase the Ess, the graph shows 
that the strength of the magnetization is oscillating. 
There  is a possibility that magnetization can only go 
up  to a certain maximum length. Also the second 
graph  show the variation in spin-spin interaction dis-
tance. For this calculation we set the Ess at the max-
imum value,  10 Ess.  The result  shows almost the 
same pattern as the result of variation in Ess. As the 
interaction distance increased the strength of mag-
netization oscillated.  The oscillation of magnetiza-
tion  opens  to  further  study  on  magnetization  of  a 
white dwarf star.  

V. CONCLUSION  
                                              

Starting with observational data for Sirius B, 
we were able to numerically arrive at an equation of 
state for the white dwarf star using Chandrasekhar's 
equation. This equation of state describes how the 
temperature and density vary with radius. Our solu-
tion method differed from other approaches in that it 
was  calculated  from  exterior  to  interior  of  a  star. 
From  our solution we predict an interior density of 
2.45x1010g/cm3 which is in line with previous results 
[4] and an internal temperature of 3x107K which is 
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also  in agreement with other studies[6].
Most notably,  we have discovered that  the 

assumption of the white dwarf star being isothermal 
is not exactly accurate. Our model predict that the 
temperature drops by a factor of 2 roughly half was 
from  the center and by a factor of 6 as 50%  of the 
radius.  

Using our equation of state, we extended the 
work of Akheizer into the ultra-relativistic regime to 
develop a model of the magnetization as a function 
of radius. In our model, we varied the spin-spin inter-
action  term  and  the  interaction  distance.  We  dis-
covered  that  there  is  a  peak  magnetization  at  a 
value of Ess=4Ec where Ec is the Coulumbic inter-
action potential energy and where the electrons are 
closest to the each other at a value of γ2 = 3x10-9. 
These results all predict internal magnetization val-
ues on the order of 1013A/m which is in agreement 
with other research[2].
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Fig 2  Magnetization in variation of Couloumbic Po-
tential Energy

Fig 3. Magnetization in variation of Spin-Spin Inter-
action Distance
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