
H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

http://sciencejournal.hsc.edu/	 	 	 	

Renovation of Spectronic-20 by Integrating a Raspberry Pi Computing
System

Tyler A. McGaughey ’18 and C. William Anderson

Department of Chemistry, Hampden-Sydney College, Hampden-Sydney, VA 23943

INTRODUCTION

The purpose of this project was to renovate a
Spectronic 20. The Spectronic-20 when it originally
came out in the 1950’s was a revolutionary
instrument. It opened many doors because of its low
cost. Over the course of production approximately
600,000 were made.1 Due to the low cost and
relatively large production numbers many high
schools and college were able to acquire one.
However, as technologies advanced they fell by the
wayside. The Spectronic 20 relies primarily on
vacuum tubes, which can take up to half an hour to
warm up. This caused them to be put in storage
closets and forgot about. The instrument also takes a
lot of skill to use. This project’s goal was to turn a
functioning antiquated instrument into a user friendly,
modern instrument.

	
HARDWARE

The first portion of this project focused on the

hardware or the actual instrument its self. The
Spectronic 20 is a spectrophotometer. Which means
it uses light to analyze a sample. The optics inside
the instrument are still viable. Figure 1 explains the
light’s path through the instrument.

Figure 1 - Optics Diagram2

Light is first emitted from the light source. It

then passes through a lens for focusing then a prism
for grating. The technician has a dial to adjust the
wavelength of light that goes to the sample. This is
useful because samples absorb different wavelengths
of light based on color. After the light passes through
the sample it hits the photo detector. The signal then
goes from the photo detector to the electronics, which
translate it into a percent absorbance. That
information is then displayed on a needle display.
Figure 2 shows the current exterior of the instrument.

Figure 2 – Exterior

First the instrument was completely

eviscerated except the optics. Figure 3 shows the
internal components prior to overhaul.

Figure 3 - Internal Mechanisms

After overhaul, new components were put

into the shell of the instrument starting with the photo
detector. It is responsible for quantifying the photons
of photons its sees and transferring that information
to a computing system. Figure 4 shows the old photo
detector.

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

	

	
http://sciencejournal.hsc.edu/	 	 	 	
	

Figure 4 – Old Photo Detector

This project utilized the TSL2591 high

dynamic range digital light sensor. This sensor is
rated for both infrared and visible light spectra. The
sensor is rated for light from 420nm to 1050nm.3 This
sensor is perfect for the project for a number of
reasons. The first is its low cost, under ten dollars.4
Second are its wide spectra abilities. Lastly, is the
easy interface via i2c with the Raspberry Pi. Figure 5
shows the TSL2591 sensor.

Figure 5 – TSL2591 Sensor 4

This sensor was mounted in the light beam

path behind the sample and connected with wires to
the general-purpose input/output (GPIO) pins on the
Raspberry Pi.
 A Raspberry Pi 3 was utilized in this project
for a number of reasons. The first is the low cost,
under forty dollars.5 Keeping in line with the goal of
the project to get these instruments back into the
classroom easily and most importantly at a low cost.
The next reason is the great versatility of the system.
There are endless programing opportunities since the
Pi comes from the manufacturer blank. It is up to the
consumer to write and program an operating system
or code. The third reason is the number of input
types. The Raspberry Pi 3 comes with built in
Bluetooth, Wi-Fi, HDMI port, four USB ports, Ethernet
port, and forty GPIO. It also comes with a 1.2 GHz
Quad Core Broadcom BCM2837 64-bit ARMv8
processor giving it a respectable amount of
processing power.5

Figure 6 – Raspberry Pi 3 5

 The aforementioned features of the
Raspberry Pi allow for easy use of the instrument.
The Wi-Fi capabilities provide the technician
operating the renovated instrument with a number of
new capabilities, for instance the ability to email data
to a professor or wireless interfacing for diagnostics.
The Bluetooth capabilities allow for the use of a
wireless mouse and keyboard. Lastly, the HDMI port
allows for the incorporation of a LCD (liquid crystal
display). After the hardware was in place the software
was developed.
	
SOFTWARE

 As stated earlier all Raspberry Pi’s come
from the manufacturer blank. It is up to the user install
their own operating system. The Raspberry Pi
foundation has several open source operating
systems designed specifically for the Raspberry Pi.
The most commonly used one is called Raspbian.6
This software is downloaded onto a micro-SD card
and then loaded into the slot on the Raspberry Pi.
Raspbian provides a simple desktop and a terminal
for python coding. All coding for this project was done
using the python language.
 The initial python code to run the TSL2591
sensor was derived from an open source repository.7
That code is listed in the code appendices. That code
was then transformed and reworked to make it more
user-friendly. The original script only outputs one lux
value. This project developed a code that is much
easier for the technician to use. The python script
opens a blank document then creates a header
consisting of Hampden Sydney College, the current
time, and the wavelength of the current test in
progress. The script then prompts the researcher to
remove all cuvettes so it can take a background light
reading. It then prompts the researcher to insert a
cuvette filled with deionized water. This allows the

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

http://sciencejournal.hsc.edu/	 	 	 	

instrument to take a max light reading. The
instrument then prompts the researcher to insert the
cuvette with the sample. It then outputs three light
values in Lux. See the second entry in the code
appendices for the full code. After both the hardware
and software were in place it was time to test the
newly renovated instrument.
	
TESTING

 As stated earlier the Spectronic 20 is a
spectrophotometer. This means that it analyzes
samples based on absorbed light. In order to test the
instrument a dilute sample of Nickel Acetate was
prepared. The solution was then run through a UV-
Vis spectrometer. This produced an absorption
spectra. The solution was then tested on the
instrument. Three values were gathered at every
wavelength; a background light value, a max light
value and a sample light value. The background light
value was obtained by measuring the amount of light
present with no cuvette in the instrument. A max light
value was then obtained by inserting a cuvette filled
with deionized water. Then the sample light value
was obtained by inserting a cuvette filled with the
sample liquid. Then using Beer’s law the percent of
light absorbed or percent transmittance was
calculated. Figure 7 shows the graph comparing the
absorption spectra of the renovated Spectronic 20
versus the UV-Vis spectrometer.

Figure 7 – Spec 20 V.S. UV-Vis Spectrometer

The blue line shows the values for the

renovated Spectronic 20 while the orange shows the
UV-Vis. The peak around 400nm is not as distinct
because the TSL2591 sensor is not rated below
420nm. However, the renovated Spectronic 20
provides comparable results for a fraction of the cost
of the UV-Vis Spectrometer.

	
	

FUTURE IMPLICATIONS

Like any project further research and work

could be done to improve this project. These efforts
could be focused on developing a better graphical
interface and producing a series of instructional how
to videos.

CONCLUSIONS

Overall the project was successful. A

Spectronic 20 was gutted and renovated with modern
electronics. These electronics allow for easier use of
the instruments. Also the entire project was done for
two to three hundred dollars. Therefore, this is a
viable option to get these instruments back into the
classroom nationwide.

ACKNOWLEDGEMENTS

I would like to personally thank Dr. Anderson
for his supervision and advice for the duration of the
project. I would also like to thank Dr. Sipe, Dr. Deifel,
and Mrs. Hines for their assistance and support.

REFERENCES

1) https://en.wikipedia.org/wiki/Spectronic_20
2) Thermo Spectronic. (2001). Operators manual for

Spectronic 20 Series Spectrophotometers, NY:
Thermo Electronic.
http://www.cienytec.com/PDFS/Espec_SPEC20_
OpMan_ing.pdf

3) AMS AG. (2013). TSL2591 Datasheet, Austria.
https://www.adafruit.com/datasheets/TSL25911_D
atasheet_EN_v1.pdf

4) https://www.adafruit.com/product/1980
5) https://www.adafruit.com/products/3055
6) https://www.raspberrypi.org/downloads/raspbian/
7) https://github.com/maxlklaxl/python-

tsl2591/blob/master/tsl2591/read_tsl.py last
update on 3/6/2106

CODE APPENDICES

Entry 1: original source code from
https://github.com/maxlklaxl/python-
tsl2591/blob/master/tsl2591/read_tsl.py
'''
This code is basically an adaptation of the
Arduino_TSL2591 library from
adafruit:
https://github.com/adafruit/Adafruit_TSL2591_Library

for configuring I2C in a raspberry
https://learn.adafruit.com/adafruits-raspberry-pi-
lesson-4-gpio-setup/configuring-i2c

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

	

	
http://sciencejournal.hsc.edu/	 	 	 	
	

datasheet:
http://ams.com/eng/Products/Light-Sensors/Light-to-
Digital-Sensors/TSL25911

'''
import smbus
import time

VISIBLE = 2 # channel 0 - channel 1
INFRARED = 1 # channel 1
FULLSPECTRUM = 0 # channel 0

ADDR = 0x29
READBIT = 0x01
COMMAND_BIT = 0xA0 # bits 7 and 5 for 'command
normal'
CLEAR_BIT = 0x40 # Clears any pending interrupt
(write 1 to clear)
WORD_BIT = 0x20 # 1 = read/write word (rather
than byte)
BLOCK_BIT = 0x10 # 1 = using block read/write
ENABLE_POWERON = 0x01
ENABLE_POWEROFF = 0x00
ENABLE_AEN = 0x02
ENABLE_AIEN = 0x10
CONTROL_RESET = 0x80
LUX_DF = 408.0
LUX_COEFB = 1.64 # CH0 coefficient
LUX_COEFC = 0.59 # CH1 coefficient A
LUX_COEFD = 0.86 # CH2 coefficient B

REGISTER_ENABLE = 0x00
REGISTER_CONTROL = 0x01
REGISTER_THRESHHOLDL_LOW = 0x02
REGISTER_THRESHHOLDL_HIGH = 0x03
REGISTER_THRESHHOLDH_LOW = 0x04
REGISTER_THRESHHOLDH_HIGH = 0x05
REGISTER_INTERRUPT = 0x06
REGISTER_CRC = 0x08
REGISTER_ID = 0x0A
REGISTER_CHAN0_LOW = 0x14
REGISTER_CHAN0_HIGH = 0x15
REGISTER_CHAN1_LOW = 0x16
REGISTER_CHAN1_HIGH = 0x17
INTEGRATIONTIME_100MS = 0x00
INTEGRATIONTIME_200MS = 0x01
INTEGRATIONTIME_300MS = 0x02
INTEGRATIONTIME_400MS = 0x03
INTEGRATIONTIME_500MS = 0x04
INTEGRATIONTIME_600MS = 0x05

GAIN_LOW = 0x00 # low gain (1x)
GAIN_MED = 0x10 # medium gain (25x)
GAIN_HIGH = 0x20 # medium gain (428x)

GAIN_MAX = 0x30 # max gain (9876x)

class Tsl2591(object):
 def __init__(
 self,
 i2c_bus=1,
 sensor_address=0x29,
 integration=INTEGRATIONTIME_100MS,
 gain=GAIN_LOW
):
 self.bus = smbus.SMBus(i2c_bus)
 self.sendor_address = sensor_address
 self.integration_time = integration
 self.gain = gain
 self.set_timing(self.integration_time)
 self.set_gain(self.gain)
 self.disable() # to be sure

 def set_timing(self, integration):
 self.enable()
 self.integration_time = integration
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

 def get_timing(self):
 return self.integration_time

 def set_gain(self, gain):
 self.enable()
 self.gain = gain
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

 def get_gain(self):
 return self.gain

 def calculate_lux(self, full, ir):
 # Check for overflow conditions first
 if (full == 0xFFFF) | (ir == 0xFFFF):
 return 0

 case_integ = {
 INTEGRATIONTIME_100MS: 100.,
 INTEGRATIONTIME_200MS: 200.,

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

http://sciencejournal.hsc.edu/	 	 	 	

 INTEGRATIONTIME_300MS: 300.,
 INTEGRATIONTIME_400MS: 400.,
 INTEGRATIONTIME_500MS: 500.,
 INTEGRATIONTIME_600MS: 600.,
 }
 if self.integration_time in case_integ.keys():
 atime = case_integ[self.integration_time]
 else:
 atime = 100.

 case_gain = {
 GAIN_LOW: 1.,
 GAIN_MED: 25.,
 GAIN_HIGH: 428.,
 GAIN_MAX: 9876.,
 }

 if self.gain in case_gain.keys():
 again = case_gain[self.gain]
 else:
 again = 1.

 # cpl = (ATIME * AGAIN) / DF
 cpl = (atime * again) / LUX_DF
 lux1 = (full - (LUX_COEFB * ir)) / cpl

 lux2 = ((LUX_COEFC * full) - (LUX_COEFD * ir))
/ cpl

 # The highest value is the approximate lux
equivalent
 return max([lux1, lux2])

 def enable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWERON | ENABLE_AEN |
ENABLE_AIEN
) # Enable

 def disable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWEROFF
)

 def get_full_luminosity(self):
 self.enable()
 time.sleep(0.120*self.integration_time+1) # not
sure if we need it "// Wait x ms for ADC to complete"
 full = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN0_LOW
)
 ir = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN1_LOW

)
 self.disable()
 return full, ir

 def get_luminosity(self, channel):
 full, ir = self.get_full_luminosity()
 if channel == FULLSPECTRUM:
 # Reads two byte value from channel 0
(visible + infrared)
 return full
 elif channel == INFRARED:
 # Reads two byte value from channel 1
(infrared)
 return ir
 elif channel == VISIBLE:
 # Reads all and subtracts out ir to give just the
visible!
 return full - ir
 else: # unknown channel!
 return 0

if __name__ == '__main__':

 tsl = Tsl2591() # initialize
 full, ir = tsl.get_full_luminosity() # read raw values
(full spectrum and ir spectrum)
 lux = tsl.calculate_lux(full, ir) # convert raw values
to lux
 print (lux, full, ir)
 print ()

 def test(int_time=INTEGRATIONTIME_100MS,
gain=GAIN_LOW):
 tsl.set_gain(gain)
 tsl.set_timing(int_time)
 full_test, ir_test = tsl.get_full_luminosity()
 lux_test = tsl.calculate_lux(full_test, ir_test)
 print ('Lux = %f full = %i ir = %i' % (lux_test,
full_test, ir_test))
 print("integration time = %i" % tsl.get_timing())
 print("gain = %i \n" % tsl.get_gain())

 for i in [INTEGRATIONTIME_100MS,
 INTEGRATIONTIME_200MS,
 INTEGRATIONTIME_300MS,
 INTEGRATIONTIME_400MS,
 INTEGRATIONTIME_500MS,
 INTEGRATIONTIME_600MS]:
 test(i, GAIN_LOW)

 for i in [GAIN_LOW,
 GAIN_MED,
 GAIN_HIGH,
 GAIN_MAX]:
 test(INTEGRATIONTIME_100MS, i)
Entry 2: This projects python code
print "Hampden Sydney College"
import datetime

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

	

	
http://sciencejournal.hsc.edu/	 	 	 	
	

now = datetime.datetime.now()
print now.strftime("%Y-%m-%d %H:%M")

fob=open('/home/pi/data.txt','a')
fob.write(" \n")
fob.write(" \n")
fob.write('Hampden Sydney College\n')
fob.write(now.strftime("%Y-%m-%d %H:%M\n"))

wavelength = raw_input("What wavelength is this test
preformed at? ")
print "Wavelength = %r" % (wavelength)
fob.write("Wavelength = %r" % (wavelength))
fob.write(" \n")

fob.close()

################blank######################
##########
blank = raw_input("Remove cuvette to run
background, press ENTER to continue.")
print 'Measuring Background Readings, Please wait.'
import smbus
import time

VISIBLE = 2 # channel 0 - channel 1
INFRARED = 1 # channel 1
FULLSPECTRUM = 0 # channel 0

ADDR = 0x29
READBIT = 0x01
COMMAND_BIT = 0xA0 # bits 7 and 5 for 'command
normal'
CLEAR_BIT = 0x40 # Clears any pending interrupt
(write 1 to clear)
WORD_BIT = 0x20 # 1 = read/write word (rather
than byte)
BLOCK_BIT = 0x10 # 1 = using block read/write
ENABLE_POWERON = 0x01
ENABLE_POWEROFF = 0x00
ENABLE_AEN = 0x02
ENABLE_AIEN = 0x10
CONTROL_RESET = 0x80
LUX_DF = 408.0
LUX_COEFB = 1.64 # CH0 coefficient
LUX_COEFC = 0.59 # CH1 coefficient A
LUX_COEFD = 0.86 # CH2 coefficient B

REGISTER_ENABLE = 0x00
REGISTER_CONTROL = 0x01
REGISTER_THRESHHOLDL_LOW = 0x02
REGISTER_THRESHHOLDL_HIGH = 0x03
REGISTER_THRESHHOLDH_LOW = 0x04
REGISTER_THRESHHOLDH_HIGH = 0x05
REGISTER_INTERRUPT = 0x06

REGISTER_CRC = 0x08
REGISTER_ID = 0x0A
REGISTER_CHAN0_LOW = 0x14
REGISTER_CHAN0_HIGH = 0x15
REGISTER_CHAN1_LOW = 0x16
REGISTER_CHAN1_HIGH = 0x17
INTEGRATIONTIME_100MS = 0x00
INTEGRATIONTIME_200MS = 0x01
INTEGRATIONTIME_300MS = 0x02
INTEGRATIONTIME_400MS = 0x03
INTEGRATIONTIME_500MS = 0x04
INTEGRATIONTIME_600MS = 0x05

GAIN_HIGH = 0x20 # medium gain (428x)

class Tsl2591(object):
 def __init__(
 self,
 i2c_bus=1,
 sensor_address=0x29,
 integration=INTEGRATIONTIME_100MS,
 gain=GAIN_HIGH
):
 self.bus = smbus.SMBus(i2c_bus)
 self.sendor_address = sensor_address
 self.integration_time = integration
 self.gain = gain
 self.set_timing(self.integration_time)
 self.set_gain(self.gain)
 self.disable() # to be sure

 def set_timing(self, integration):
 self.enable()
 self.integration_time = integration
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

 def get_timing(self):
 return self.integration_time

 def set_gain(self, gain):
 self.enable()
 self.gain = gain
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

http://sciencejournal.hsc.edu/	 	 	 	

 def get_gain(self):
 return self.gain

 def calculate_lux(self, full, ir):
 # Check for overflow conditions first
 if (full == 0xFFFF) | (ir == 0xFFFF):
 return 0

 case_integ = {
 INTEGRATIONTIME_100MS: 100.,
 INTEGRATIONTIME_200MS: 200.,
 INTEGRATIONTIME_300MS: 300.,
 INTEGRATIONTIME_400MS: 400.,
 INTEGRATIONTIME_500MS: 500.,
 INTEGRATIONTIME_600MS: 600.,
 }
 if self.integration_time in case_integ.keys():
 atime = case_integ[self.integration_time]
 else:
 atime = 100.

 case_gain = {GAIN_HIGH: 428.}

 if self.gain in case_gain.keys():
 again = case_gain[self.gain]
 else:
 again = 1.

 # cpl = (ATIME * AGAIN) / DF
 cpl = (atime * again) / LUX_DF
 lux1 = (full - (LUX_COEFB * ir)) / cpl

 lux2 = ((LUX_COEFC * full) - (LUX_COEFD * ir))
/ cpl

 # The highest value is the approximate lux
equivalent
 return max([lux1, lux2])

 def enable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWERON | ENABLE_AEN |
ENABLE_AIEN
) # Enable

 def disable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWEROFF
)

 def get_full_luminosity(self):
 self.enable()
 time.sleep(0.120*self.integration_time+1) # not
sure if we need it "// Wait x ms for ADC to complete"

 full = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN0_LOW
)
 ir = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN1_LOW
)
 self.disable()
 return full, ir

 def get_luminosity(self, channel):
 full, ir = self.get_full_luminosity()
 if channel == FULLSPECTRUM:
 # Reads two byte value from channel 0
(visible + infrared)
 return full
 elif channel == INFRARED:
 # Reads two byte value from channel 1
(infrared)
 return ir
 elif channel == VISIBLE:
 # Reads all and subtracts out ir to give just the
visible!
 return full - ir
 else: # unknown channel!
 return 0

if __name__ == '__main__':

 tsl = Tsl2591() # initialize
 full, ir = tsl.get_full_luminosity() # read raw values
(full spectrum and ir spectrum)
 lux = tsl.calculate_lux(full, ir) # convert raw values
to lux

 def test(int_time=INTEGRATIONTIME_100MS,
gain=GAIN_HIGH):
 tsl.set_gain(gain)
 tsl.set_timing(int_time)
 full_test, ir_test = tsl.get_full_luminosity()
 lux_test = tsl.calculate_lux(full_test, ir_test)
 fob=open('/home/pi/data.txt','a')
 fob.write(" \n")
 fob.write('Background Reading\n')
 fob.write('full = %i\n' % (full_test))
 fob.write("integration time = %i\n" %
tsl.get_timing())
 fob.write("gain = %i \n" % tsl.get_gain())
 fob.close()
 print ('full = %i' % (full_test))
 print("integration time = %i" % tsl.get_timing())
 print("gain = %i \n" % tsl.get_gain())

 for i in [INTEGRATIONTIME_200MS]:
 test(i, GAIN_HIGH)

##############Max#########################

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

	

	
http://sciencejournal.hsc.edu/	 	 	 	
	

upper = raw_input("Insert cuvette with DiH2O to
establish max light value, press ENTER to continue.")
print 'Measuring Upper Bound Readings, Please
wait.'
import smbus
import time

VISIBLE = 2 # channel 0 - channel 1
INFRARED = 1 # channel 1
FULLSPECTRUM = 0 # channel 0

ADDR = 0x29
READBIT = 0x01
COMMAND_BIT = 0xA0 # bits 7 and 5 for 'command
normal'
CLEAR_BIT = 0x40 # Clears any pending interrupt
(write 1 to clear)
WORD_BIT = 0x20 # 1 = read/write word (rather
than byte)
BLOCK_BIT = 0x10 # 1 = using block read/write
ENABLE_POWERON = 0x01
ENABLE_POWEROFF = 0x00
ENABLE_AEN = 0x02
ENABLE_AIEN = 0x10
CONTROL_RESET = 0x80
LUX_DF = 408.0
LUX_COEFB = 1.64 # CH0 coefficient
LUX_COEFC = 0.59 # CH1 coefficient A
LUX_COEFD = 0.86 # CH2 coefficient B

REGISTER_ENABLE = 0x00
REGISTER_CONTROL = 0x01
REGISTER_THRESHHOLDL_LOW = 0x02
REGISTER_THRESHHOLDL_HIGH = 0x03
REGISTER_THRESHHOLDH_LOW = 0x04
REGISTER_THRESHHOLDH_HIGH = 0x05
REGISTER_INTERRUPT = 0x06
REGISTER_CRC = 0x08
REGISTER_ID = 0x0A
REGISTER_CHAN0_LOW = 0x14
REGISTER_CHAN0_HIGH = 0x15
REGISTER_CHAN1_LOW = 0x16
REGISTER_CHAN1_HIGH = 0x17
INTEGRATIONTIME_100MS = 0x00
INTEGRATIONTIME_200MS = 0x01
INTEGRATIONTIME_300MS = 0x02
INTEGRATIONTIME_400MS = 0x03
INTEGRATIONTIME_500MS = 0x04
INTEGRATIONTIME_600MS = 0x05

GAIN_HIGH = 0x20 # medium gain (428x)

class Tsl2591(object):
 def __init__(
 self,

 i2c_bus=1,
 sensor_address=0x29,
 integration=INTEGRATIONTIME_100MS,
 gain=GAIN_HIGH
):
 self.bus = smbus.SMBus(i2c_bus)
 self.sendor_address = sensor_address
 self.integration_time = integration
 self.gain = gain
 self.set_timing(self.integration_time)
 self.set_gain(self.gain)
 self.disable() # to be sure

 def set_timing(self, integration):
 self.enable()
 self.integration_time = integration
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

 def get_timing(self):
 return self.integration_time

 def set_gain(self, gain):
 self.enable()
 self.gain = gain
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

 def get_gain(self):
 return self.gain

 def calculate_lux(self, full, ir):
 # Check for overflow conditions first
 if (full == 0xFFFF) | (ir == 0xFFFF):
 return 0

 case_integ = {
 INTEGRATIONTIME_100MS: 100.,
 INTEGRATIONTIME_200MS: 200.,
 INTEGRATIONTIME_300MS: 300.,
 INTEGRATIONTIME_400MS: 400.,
 INTEGRATIONTIME_500MS: 500.,
 INTEGRATIONTIME_600MS: 600.,
 }
 if self.integration_time in case_integ.keys():

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

http://sciencejournal.hsc.edu/	 	 	 	

 atime = case_integ[self.integration_time]
 else:
 atime = 100.

 case_gain = {GAIN_HIGH: 428.}

 if self.gain in case_gain.keys():
 again = case_gain[self.gain]
 else:
 again = 1.

 # cpl = (ATIME * AGAIN) / DF
 cpl = (atime * again) / LUX_DF
 lux1 = (full - (LUX_COEFB * ir)) / cpl

 lux2 = ((LUX_COEFC * full) - (LUX_COEFD * ir))
/ cpl

 # The highest value is the approximate lux
equivalent
 return max([lux1, lux2])

 def enable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWERON | ENABLE_AEN |
ENABLE_AIEN
) # Enable

 def disable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWEROFF
)

 def get_full_luminosity(self):
 self.enable()
 time.sleep(0.120*self.integration_time+1) # not
sure if we need it "// Wait x ms for ADC to complete"
 full = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN0_LOW
)
 ir = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN1_LOW
)
 self.disable()
 return full, ir

 def get_luminosity(self, channel):
 full, ir = self.get_full_luminosity()
 if channel == FULLSPECTRUM:
 # Reads two byte value from channel 0
(visible + infrared)
 return full
 elif channel == INFRARED:

 # Reads two byte value from channel 1
(infrared)
 return ir
 elif channel == VISIBLE:
 # Reads all and subtracts out ir to give just the
visible!
 return full - ir
 else: # unknown channel!
 return 0

if __name__ == '__main__':

 tsl = Tsl2591() # initialize
 full, ir = tsl.get_full_luminosity() # read raw values
(full spectrum and ir spectrum)
 lux = tsl.calculate_lux(full, ir) # convert raw values
to lux

 def test(int_time=INTEGRATIONTIME_100MS,
gain=GAIN_HIGH):
 tsl.set_gain(gain)
 tsl.set_timing(int_time)
 full_test, ir_test = tsl.get_full_luminosity()
 lux_test = tsl.calculate_lux(full_test, ir_test)
 fob=open('/home/pi/data.txt','a')
 fob.write(" \n")
 fob.write('Max Reading\n')
 fob.write('full = %i\n' % (full_test))
 fob.write("integration time = %i\n" %
tsl.get_timing())
 fob.write("gain = %i \n" % tsl.get_gain())
 fob.close()
 print ('full = %i' % (full_test))
 print("integration time = %i" % tsl.get_timing())
 print("gain = %i \n" % tsl.get_gain())

 for i in [INTEGRATIONTIME_200MS]:
 test(i, GAIN_HIGH)

##################Sample##################
#############
sample = raw_input("Insert cuvette with sample to run
sample, press ENTER to continue.")
print 'Measuring Sample Readings, Please wait.'
import smbus
import time

VISIBLE = 2 # channel 0 - channel 1
INFRARED = 1 # channel 1
FULLSPECTRUM = 0 # channel 0

ADDR = 0x29
READBIT = 0x01
COMMAND_BIT = 0xA0 # bits 7 and 5 for 'command
normal'
CLEAR_BIT = 0x40 # Clears any pending interrupt
(write 1 to clear)

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

	

	
http://sciencejournal.hsc.edu/	 	 	 	
	

WORD_BIT = 0x20 # 1 = read/write word (rather
than byte)
BLOCK_BIT = 0x10 # 1 = using block read/write
ENABLE_POWERON = 0x01
ENABLE_POWEROFF = 0x00
ENABLE_AEN = 0x02
ENABLE_AIEN = 0x10
CONTROL_RESET = 0x80
LUX_DF = 408.0
LUX_COEFB = 1.64 # CH0 coefficient
LUX_COEFC = 0.59 # CH1 coefficient A
LUX_COEFD = 0.86 # CH2 coefficient B

REGISTER_ENABLE = 0x00
REGISTER_CONTROL = 0x01
REGISTER_THRESHHOLDL_LOW = 0x02
REGISTER_THRESHHOLDL_HIGH = 0x03
REGISTER_THRESHHOLDH_LOW = 0x04
REGISTER_THRESHHOLDH_HIGH = 0x05
REGISTER_INTERRUPT = 0x06
REGISTER_CRC = 0x08
REGISTER_ID = 0x0A
REGISTER_CHAN0_LOW = 0x14
REGISTER_CHAN0_HIGH = 0x15
REGISTER_CHAN1_LOW = 0x16
REGISTER_CHAN1_HIGH = 0x17
INTEGRATIONTIME_100MS = 0x00
INTEGRATIONTIME_200MS = 0x01
INTEGRATIONTIME_300MS = 0x02
INTEGRATIONTIME_400MS = 0x03
INTEGRATIONTIME_500MS = 0x04
INTEGRATIONTIME_600MS = 0x05

GAIN_HIGH = 0x20 # medium gain (428x)

class Tsl2591(object):
 def __init__(
 self,
 i2c_bus=1,
 sensor_address=0x29,
 integration=INTEGRATIONTIME_100MS,
 gain=GAIN_HIGH
):
 self.bus = smbus.SMBus(i2c_bus)
 self.sendor_address = sensor_address
 self.integration_time = integration
 self.gain = gain
 self.set_timing(self.integration_time)
 self.set_gain(self.gain)
 self.disable() # to be sure

 def set_timing(self, integration):
 self.enable()
 self.integration_time = integration
 self.bus.write_byte_data(

 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

 def get_timing(self):
 return self.integration_time

 def set_gain(self, gain):
 self.enable()
 self.gain = gain
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT |
REGISTER_CONTROL,
 self.integration_time | self.gain
)
 self.disable()

 def get_gain(self):
 return self.gain

 def calculate_lux(self, full, ir):
 # Check for overflow conditions first
 if (full == 0xFFFF) | (ir == 0xFFFF):
 return 0

 case_integ = {
 INTEGRATIONTIME_100MS: 100.,
 INTEGRATIONTIME_200MS: 200.,
 INTEGRATIONTIME_300MS: 300.,
 INTEGRATIONTIME_400MS: 400.,
 INTEGRATIONTIME_500MS: 500.,
 INTEGRATIONTIME_600MS: 600.,
 }
 if self.integration_time in case_integ.keys():
 atime = case_integ[self.integration_time]
 else:
 atime = 100.

 case_gain = {GAIN_HIGH: 428.}

 if self.gain in case_gain.keys():
 again = case_gain[self.gain]
 else:
 again = 1.

 # cpl = (ATIME * AGAIN) / DF
 cpl = (atime * again) / LUX_DF
 lux1 = (full - (LUX_COEFB * ir)) / cpl

 lux2 = ((LUX_COEFC * full) - (LUX_COEFD * ir))
/ cpl

H-SC Journal of Sciences (2017) Vol. VI McGaughey and Anderson

http://sciencejournal.hsc.edu/	 	 	 	

 # The highest value is the approximate lux
equivalent
 return max([lux1, lux2])

 def enable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWERON | ENABLE_AEN |
ENABLE_AIEN
) # Enable

 def disable(self):
 self.bus.write_byte_data(
 self.sendor_address,
 COMMAND_BIT | REGISTER_ENABLE,
 ENABLE_POWEROFF
)

 def get_full_luminosity(self):
 self.enable()
 time.sleep(0.120*self.integration_time+1) # not
sure if we need it "// Wait x ms for ADC to complete"
 full = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN0_LOW
)
 ir = self.bus.read_word_data(
 self.sendor_address, COMMAND_BIT |
REGISTER_CHAN1_LOW
)
 self.disable()
 return full, ir

 def get_luminosity(self, channel):
 full, ir = self.get_full_luminosity()
 if channel == FULLSPECTRUM:
 # Reads two byte value from channel 0
(visible + infrared)
 return full
 elif channel == INFRARED:
 # Reads two byte value from channel 1
(infrared)
 return ir
 elif channel == VISIBLE:
 # Reads all and subtracts out ir to give just the
visible!
 return full - ir
 else: # unknown channel!
 return 0

if __name__ == '__main__':

 tsl = Tsl2591() # initialize
 full, ir = tsl.get_full_luminosity() # read raw values
(full spectrum and ir spectrum)
 lux = tsl.calculate_lux(full, ir) # convert raw values
to lux

 def test(int_time=INTEGRATIONTIME_100MS,
gain=GAIN_HIGH):
 tsl.set_gain(gain)
 tsl.set_timing(int_time)
 full_test, ir_test = tsl.get_full_luminosity()
 lux_test = tsl.calculate_lux(full_test, ir_test)
 fob=open('/home/pi/data.txt','a')
 fob.write(" \n")
 fob.write('Sample Reading\n')
 fob.write('full = %i\n' % (full_test))
 fob.write("integration time = %i\n" %
tsl.get_timing())
 fob.write("gain = %i \n" % tsl.get_gain())
 fob.close()
 print ('full = %i' % (full_test))
 print("integration time = %i" % tsl.get_timing())
 print("gain = %i \n" % tsl.get_gain()) y

 for i in [INTEGRATIONTIME_200MS]:
 test(i, GAIN_HIGH)

