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ABSTRACT
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Abstract

We classified and analyzed the critical curves of 4x4 matrices, paying particular
attention to unitarily irreducible cases. We investigated formulas for curves with two
and three flat portions from the principle that curves with one or two flat portions could
have their flat portions rotated to specific axes. We also performed investigations on
other related topics, including ways to plot critical curves and ways to analyze their

permutations.

Introduction

The numerical range is the range of the Rayleigh quotient R = %, where x is a vector

(a 1% n matrix) and x* consists of the conjugate transpose of x. The critical curves of the
numerical range are the values where the Jacobian is not rank 2. We already know that for
a 2x2 matrix, the numerical range is composed of ellipses and smoothly connected points —
and for a 3x3 matrix, there are three cases: a reducible matrix (one that can be factored
as A = P71SP), which ends up being the same case as the 2x2 matrix, and two irreducible
matrix cases, whose general forms are shown below. Our goal was to be able to characterize
the critical curves of 4x4 matrices, focusing on the cases where the matrices were unitarily

irreducible.

Methods

First, I wrote a Mathematica program to exploit a possible new method of graphing crit-

ical curves. First, the matrix was factored into real (H) and imaginary (K') parts, using



the formulas H = % and K = A;ZA*. We set a differential (d = 0.01 for most of the

plotting done), and then for 0 < j < 27 (increasing j by the step size of d each time),

we let n = (cosj)(H) + (sinj)(K) and m = (COS[jJr(diff)])(Hd);};sm[jﬂdiff)])(K). To calculate

the z-coordinate of the intended point, we calculated r = Real[(e”)(Figenvalues[n]) +
e (i)(Figenvalues[m])] and ¢ = Imaginary|(e”)(Eigenvalues[n])+e" (i)( Eigenvalues[m]))].
Unfortunately, since the program used differentials to compute the graphs, and those deriva-

tives approached infinity at certain points, it was not as effective as hoped.

In order to investigate the order of the eigenvalue crossings further, we created a program
to compute the Taylor series for the specific eigenvalue curves of cos kH + sin kK. We com-
puted the determinant of the matrix form manually, then used Mathematica to solve for the
1st through 4th series coefficients. Sadly, the series were too complicated to have a proper

investigative use.

We attempted to investigate the permutations of the critical curves and relate them to
properties of the matrix. We were not able to determine a relation between the properties
of the matrix and the critical curves, but we determined that adding a single cycle to per-
mutations of the critical curves must result in a single-cycle permutation, and adding two

must necessarily result in a two-cycle.

The main result of our work this summer was the following theorem. We showed that
all unitarily irreducible 4x4 matrices have three or less flat portions, which goes a long way

towards full characterization of the critical curves by flat portions because the unitarily re-



ducible case is fairly simple compared to the unitarily irreducible case (since the numerical

range of a normal matrix is simply the convex hull of the eigenvalues.

Theorem: All unitarily irreducible 4x4 matrices have three or less flat portions.
Consider a 4x4 matrix A. Then for the numerical range of the matrix, we can rotate the
numerical range, find a unitarily similar matrix with the same numerical range, or deform-

ing the vertical and horizontal flat portions separately. We want cosH + sin 0K to have

a crossing (where H = 434 and K = 454 for W(A) for A to have a flat portion. With
one flat portion, we can simply apply a rotational transform to A to rotate the flat portion
onto the horizontal axis. Upon addition of the second flat portion, we can divide through
by cosf to get H + tK, where t € R, since tanf has a range of the entire real line. Thus it
is apparent that we can set the angle between the flat portions 6 such that the flat portions
are perpendicular to each other. Therefore, we can assume that any one flat portion was a
horizontal flat portion, and any two flat portions were a horizontal and vertical flat portion.
With this information, we want to show that a unitarily irreducible 4x4 matrix can only have
three or less flat portions. First, we came up with a form for curves requiring more than
two flat portions. First, we construct a matrix with a numerical range that contains two
A+A

flat portions. We started with a matrix in two parts, real and imaginary - H = 4 5 and

K = AgiA*, respectively, where we required two non-parallel flat portions. We know that
a numerical range with these two flat portions will be deformable into a numerical range
with perpendicular flat portions, and that since we can rotate the numerical range, we can
assume that they are on the real and imaginary axes for simplicity. First, we consider the

real matrix’ H. In order to generate our first flat portion, we want to have two nonzero
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eigenvalues, a and b. We set the matrix up diagonally, with a and b in the lower right 2x2
block. However, since we want the eigenvalues to be on the diagonal and the matrix is
Hermitian, the lower left and upper right 2x2 blocks must be identically zero. In addition,
since we want two zero eigenvalues, we want the top left 2x2 block to be identically zero as
well. For the ’'imaginary matrix’ K, we wanted to require the matrix be rank 2 and that
it be Hermitian (as previously mentioned, both H and K must be Hermitian due to their
definition). Due to the zero blocks in H, we can diagonalize the top left 2x2 block of K.
The top right 2x2 block K is unknown, but since we know that K is Hermitian, we can
have the lower left 2x2 block equal K7. Since the matrix is required to be rank 2, we know
that it has 2 linearly independent rows. It is apparent that due to the zero pattern of the
matrix, if we take any rows other than the first two as our linearly independent rows, we will
obtain a matrix with a rank higher than 3. Hence, the lower two rows of K must be a linear
combination of the first two rows, and thus the bottom right 2x2 block of the matrix must be
the top right 2x2 block transformed by the same linear transformation as the transformation
from the top left 2x2 block to the bottom left 2x2 block. We now solve for the exact nature

of this linear transformation.

We have
c 0
Q = Ky
0 d
-1
10
Q=K
0 3



Q=
)

Q=K

-

Now, we know that the bottom right 2x2 block of K is equal to QQK, so therefore it must

1
=0
be equal to K7 ‘ K.
1
0 32
0000
0000 Ky K
So, finally, we end up with H = and K = , where
00 a0 K KiKj;'K;
00 0 b
c 0 e f
Ky = and K; =
0 d g h

Now that we have a form for two flat portions, we can require three flat portions from

this form by requiring that cos 0 H + sin 6 K have a repeat eigenvalue. We perform a simplifi-

cosOH+sin 0K
sin 6

cation by dividing through by sin #, producing =tH + K, since cot § has a range

of the entire real line. So to produce our third flat portion, we require tH + K — Al to have a
repeat eigenvalue of 0, where [ is the identity matrix. Since ¢ = X\ or d = A produces a matrix
with a rank no less than 3, we consider the bottom left 2x2 block of our matrix. We can
apply the same principle that we used to find the bottom right 2x2 block of K to this new
ta — s 0 ——

c—S

matrix tH + K — XI. We have K7 K+ = K7 K.
0 th—s 0

Q=
o

1
d—s
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ta— s 0 L1 0

So thus = K| ¢ K, or rather, a diagonal matrix
1 1
1 1 0
D = K{EK;, where E = o . However, by diagonalization, we can make
1 1
0 =4
10
E = , Where e is an arbitrary constant. By temporarily considering the values of
0 e

a b _ _
K, as ] and by multiplying out K7 EK;, we can show that ba + cde = 0, and thus

£. We want to show this to be one to one. We have e = f(s) = ;gfl:ss)), where

c,d € R. Let f(b) = f(a), where a and b are arbitrary real numbers. Then

(@=b0) (@-b) (@-a) (d-a)
c(d—a)—bd—a)=c(d—>b)—a(d—0)
cd —ca —bd +ba = cd — cb — ad + ba
—ca —bd = —cb—ad
ad — ac = bd — bc
a(d —c) =b(d — c)

a=1b

. So since f(b) = f(a) = b=a, [ is one to one. Since f is one to one, for every e, there is
only one corresponding s, so we know that for every matrix, there is only one more possible
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flat portion.

I wrote a macro to upload examples of various types automatically to an Imgur account

(http://critcurves.imgur.com). Using this, I observed various interesting critical curves.
Note, however, that the set of random matrices generated was of somewhat limited utility,
since the set of ’interesting matrices’ of a certain form is almost guaranteed to be measure 0
on the set of all produced matrices. Using the limited form, I then observed real and complex
changes in each of the variables in each zero pattern of the matrix (15 primary forms, with
64 secondary forms). I recorded how each change affected the graph of the critical curve for

each matrix. This data can be accessed online along with the graphs.

Conclusions

e We proved that for unitarily irreducible 4x4 matrices, their numerical range can have

a maximum of three flat portions.

e We also observed and recorded the graphs that went along with each zero pattern of

each matrix.

e We also made attempts at characterizing the critical curves by order of eigenvalue

crossings and permutations, but they were unsuccessful.

Forthcoming Research

We would like to extend our research into the 5x5 case this semester.
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