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ABSTRACT 
We report on several techniques we have developed 
for generating musical compositions algorithmically. 
Most of our techniques are based on our idea of a 
sequence recursion, which is a method for generating 
finite integer sequences that can represent pitches 
and rhythms. Our research is two-pronged: we 
develop the mathematical properties and techniques 
associated with sequence recursions, and we apply 
these techniques to the synthesis of new musical 
compositions. Sequence recursions use basic 
musical operations such as repetition, transposition, 
and inversion to iteratively generate integer 
sequences of increasing length and complexity. 
These sequences are then mapped into musical 
structures such as scale or rhythm patterns to 
produce melodies and accompaniments. We present 
several examples of musical compositions produced 
by this process. 

 
INTRODUCTION 
In this paper, we report on several techniques we 
have developed for generating musical compositions 
algorithmically. These techniques are based primarily 
on our idea of a sequence recursion, which is a 
method for generating finite integer sequences that 
can represent pitches and rhythms. We call these 
sequences pitch patterns and rhythm patterns, 
respectively, and we have developed many 
operations we can per- form on them. Pitch patterns 
provide a list of integers that are mapped onto 
pitches, while rhythm patterns designate the start 
times for notes. Rhythm patterns also have a 
corresponding object called a division scheme, which 
dictates the interval of time a rhythm pattern live on. 
For both pitch and rhythm, some of the operations we 
have developed mirror basic musical operations such 
as repetition, transposition, and inversion when we 
iteratively generate sequences of increasing length 
and complexity. However, we also have a number of 
operations that are unusual in standard musical 
composition and yield interesting and unexpected 
results. For both pitches and rhythms, these unusual 
operations are rotation, reversal, concatenation, and 
composition, and rhythm patterns additionally use the 
merge operation. Modern musical notation utilizes 
notes, which are objects that contain information 
about 
both pitch and duration. In this case, pitch and rhythm 
are intrinsically locked together, but in our research, 
information about pitch and rhythm are stored in two 

separate sequences, and we later tie them both 
together into one object, which we call a melody/line. 

Our research is two-pronged: we develop the 
mathematical properties and techniques associated 
with sequence recursions, and we apply these 
techniques to the synthesis of new musical 
compositions. Our primary tool for sequence 
recursions is something we call a substitution 
scheme, and in our research, we have thoroughly 
explored the uses and properties of these schemes. 
Substitution schemes take shorter, simpler pitch and 
rhythm patterns, and transform them into longer and 
more complicated sequences. We also present two 
special cases of substitution schemes, called 
palindromic and rearrangement schemes. 

When synthesizing new compositions, we 
utilize our algorithmic techniques to generate both 
melody and harmony. We usually only focus on 
designing melody, because harmony and 
accompaniments naturally arise out of the melody we 
create. We also take into consideration a musician’s 
needs for sheet music, and we have de- signed a 
number of methods for performing mathematical 
tweaks on music to make it more playable, including 
transposition, modulo, and reflection. We present 
several examples of musical compositions produced 
by this process. 

This primary mathematical focus of this 
research is on pitch and its related components. 
Though we do not delve too deeply into the 
mathematics of rhythm, we have developed enough 
theory to at least utilize it in the creation of music [3]. 
Additionally, the two other primary aspects of music, 
volume and timbre, are selected arbitrarily—however, 
we could certainly determine these parameters 
algorithmically as well. 

 
THEORY AND METHODS 
We will first discuss pitch and a mathematical way to 
model it. Musical pitch refers to the quality of sound 
governed by the rate of vibrations producing it. In 
terms of human perception, we are talking about the 
degree of highness or lowness of a tone. Without 
getting into too much detail, distinct pitches in 
musical notation are denoted by the letters A to G. 
Notes increase in pitch as one would expect, such 
that a C sounds lower than a D, and so on. 

Core to this research is the idea that musical 
pitches can be represented with integers. For 
example, we could arbitrarily map the integers 0, 1, 
and 2 to the notes C, C#, and D, respectively. In 
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order to meet these specifications, we combine 
strings of integers into an object we have created 
called a pitch patterns, which we directly transform 
into sequences of musical notes. We denote the set 
of all pitch patterns by P = 1n=1 Zn, where Z is the 
set of all integers. Throughout this paper, we will use 
letters from the first half of the Greek alphabet to 
denote pitch patterns. 

As a side note, an octave is an interval 
between one musical pitch and another with a 
frequency that delivers by a power of two. The note 
that is an octave above a C is still called a C, but we 
say it is in a higher octave. There are twelve tones 
between an octave in standard western music, 
although there are an infinite number of frequencies. 
In our research, we rely on octaves through our 
notion of octave equivalence, which we define as the 
ability to move between different octaves of a pitch 
without changing the fundamental sound of a musical 
composition. When faced with a pitch pattern with a 
large range of integers, we utilize octave equivalence 
to continue notes as far upwards or downwards as 
desired. 

In addition to pitches, rhythms may also be 
represented mathematically. In music theory, a beat 
is the basic unit of time; it is often defined as the 
numbers a musician would count while performing. A 
note may last any number of beats, and each note 
has a name with respect to its duration. In most 
cases, a whole note refers to a note which lasts four 
beats. Intuitively, a half note refers to a note with a 
duration of two beats, a quarter note to one beat, an 
eighth note to a half a beat, and so on. A measure is 
a segment of time corresponding to a specific 
number of beats. Dividing music into measures 
provides regularity in a musical composition, a 
regularity that helps analyze music in a more 
mathematical fashion. A time signature defines how 
many beats occur in a measure, as well as which 
note receives the beat. One final aspect of interest for 
rhythms is the accent, which describes a particular 
emphasis placed on a note. Generally, greater 
emphasis is placed on higher-level beats, while 
greater subdivisions receive a decreasing amount of 
emphasis. 

Though our research does not heavily focus 
on the mathematical representation of rhythm, we still 
work with the conceptual properties of rhythm and 
explore methods for generating new rhythms. 

A division scheme is a division of an interval 
into d`1 equal subintervals, each of which is 
subdivided into d`2 equal subintervals, and so on, 
concluding with a final subdivision of each interval 
into d0 equal subintervals. Division schemes take the 
form D = (d`1 d`2 . . . d1 d0), where ` is the number of 
levels in the scheme, and the value of di is the 
number of subdivisions at level i. Beats are 
numbered from zero. We typically interpret the levels 

in divisions schemes as how much emphasis a 
particular beat receives, with the leftmost level 
receiving the most emphasis, and the rightmost level 
receiving the least.  

Division schemes are particularly useful 
because they mirror time signatures in standard 
Western music notation. For example, the division 
scheme D = (4 2) represents a division of an interval 
into four major pieces, each of which is also divided 
into two pieces. A measure of 4/4 time in Western 
music has this structure. Note that in this case, we 
have four major beats, and each has eighth-note 
resolution. This division scheme can be diagrammed 
as follows.  

 

 
 

As with pitch patterns, we have developed a 
way to organize rhythms systematically. We define a 
rhythm pattern as a sequence of strictly increasing 
positive integers that represent the starting times for 
a sequence of notes. Unless we specify duration, one 
note is played up until the starting time of a new note. 
We denote rhythm patterns with letters from the 
second half of the Greek alphabet. An example of a 
perfectly reasonable rhythm pattern is (0 1 2 3), 
which signifies four notes held for equal durations. 
The purpose of divisions schemes is to contextualize 
rhythm patterns in an interval of time, and they are 
particularly useful at illustrating more complicated 
rhythm patterns. Division schemes also inform us 
when the last note of a rhythm pattern ends. 

We also have a number of operations we can 
perform on rhythm patterns. Though we have not 
developed the mathematical notation for rhythm, we 
can still accurately describe how each operation 
occurs. Due to the nature of rhythm patterns, we do 
not have transposition and inversion operations. 
Therefore, our first unary operation is rotation. Like 
with pitch patterns, rotation is circular. For example, 
the right rotation of the rhythm pattern (1 2 5) with 
division scheme (2 3) is (0 2 3). 

When we put pitch and rhythm together, the 
result is a string of notes that we perceive as a 
melody. Similarly, when we lay pitch and rhythm 
patterns side by side, we have sequences of 
parameters that can ultimately be transformed into a 
musical melody. In our research, we refer to the 
combination of a compatible pitch and rhythm pattern 
as a line. When we say compatible, we mean that 
both the pitch and rhythm pattern have the same an 
equal number of elements so that the resulting 
musical notes that are created are assigned both 
pitch and rhythm. This should make sense, because 
if the length of a given pitch and rhythm pattern mis- 
match, some notes with either not be assigned a 
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pitch, or in the opposite case, some notes will not 
have a rhythm. 

As an example, consider the following set of 
parameters: 

Division scheme: (2 4 2) 
Rhythm pattern: (0 4 6 8 9 10 12 14) 
Pitch pattern: (0 2 1 3 4 5 2 0) with pitches 
assigned to notes on the C-Major scale 

With these parameters, we create the following 
melody: 

 

 
 Here, we briefly note that pitch and rhythm 
patterns are designed in such a way so that any 
operations that both patterns chare can be applied to 
both at the same time without causing any problems. 
This include the unary operations of rotation and 
reversal and the binary operations concatenation and 
composition. Additionally, we can perform as many 
operations on pitch as we desire without worrying 
about a potential mismatch in the length of the 
corresponding rhythm pattern. However, unary 
rhythm operations that alter the number of events in a 
pattern (e.g. complementation) cannot be applied to a 
line, because there is no natural way to assign 
pitches to the altered rhythms. 
 The foundation for algorithmic musical 
composition can be approached any number of ways. 
Traditionally, we begin by building a substitution 
scheme that is entirely arbitrary and hopefully 
interesting. We may have an idea of the shape we 
want a piece to take, but more often, we just design a 
substitution scheme that is mathematically 
fascinating, and we let the outcome surprise us. 
Additionally, while creating our substitution schemes, 
we want to keep in mind which parameters we will 
utilize. For example, we may want a scheme that 
merely transposes and rearranges our input, or we 
could create a scheme that additionally rotates and 
inverts our input. 

When considering the operations, we have 
outlined above, we may also decide whether we want 
each operation to apply to a motif as a whole, or 
instead to our pitch and rhythm patterns 
independently. For example, we usually rotate a motif 
by thinking of it as a sequence of notes, but we could 
by all means rotate pitch and rhythm independently 
and then reconstruct our motifs afterwards. The 
arrangements of operations in our substitution 
schemes are only limited by the imagination of the 
composer, and these substitution schemes determine 
the large-scale structure of a composition. 

After we have outlined the operations we 
wish to perform, we then design a number of motifs 

to input into our algorithm. How these motifs are 
designed ultimately determines the texture of a 
composition, and through these motifs, we may hear 
a composer’s own style emerge. We may also 
instead choose to mathematically represent a well-
known motif, and then mutate said motif with our 
substitution schemes. For example, we could 
represent a simplified version of Beethoven’s “Ode to 
Joy
” 
the
me 
as follows: 
 

We don’t often design motifs with harmony in 
mind, because harmony naturally arises when 
multiple motifs are played together. When creating 
motifs, we also tend to create pairs of faster moving 
parts with higher pitches, and pairs of slower moving 
parts with lower pitches. Afterwards, we assign a 
musical instrument to each line in the output—
generally, we assign melodic instruments (like the 
violin) to higher and quicker parts, and bass 
instruments (like the electric bass or tuba) lower and 
slower parts. 

If we want a piece to be played purely 
through software, we often don’t make any final 
tweaks to our music because software can handle 
any musical oddity thrown at it. However, if we want 
our music to be played by a musician on a traditional 
musical instrument, we often need to make 
adjustments to the sheet music to meet a musician’s 
demands, particularly when it comes to pitch. We 
could of course just arbitrarily revise sheet music on 
a whim, but these revisions would ultimately dis- 
qualify a piece as a pure algorithmic composition. 
Therefore, we instead present a number of ways to 
mathematically tweak music so that the process 
remains algo- rithmic as well as transparent. 

Another aspect of our algorithmic process to 
consider is that oftentimes, itera- tively generated 
music ends abruptly. As a result, we may decide to 
concatenate a final measure or two of new music 
onto the end of a composition to give it a greater 
sense of finality. 

One of the more obvious problems that 
occurs after many iterations of a substitution scheme 
is that all of the elements in the resulting pitch 
patterns may be rather small or large, resulting in 
very low or high pitches. If we were to assign one of 
these parts to a musical instrument, we may want to 
transpose it up or down to meet a player’s needs, 
often by utilizing octave equivalence. With multiple 
instruments playing a piece, if too many instruments 
are playing in the same frequency range, the piece 
may often sound chaotic and muddy, and will often 
be quite dissonant. We may reduce this cluttering by 
transposing lines apart. 
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Another problem that potentially arises after 
many iterations of a recursively gen- erated pitch 
pattern is that the di↵erence between the smallest 
and largest integers can become quite large. When 
converted to pitches, extreme values from a pitch 
pattern in either direction create a variety of 
problems. In the worst case, a pitch may be so 
extreme that it falls outside the range of human 
hearing, or it may reach a point that is at least not 
pleasing to listen to. For most musical instruments 
that can only play a limited number of octaves, 
extreme pitches become unwieldy or even 
unplayable. With these problems in mind, we utilize a 
couple of methods to resolve these issues in a 
mathematically satisfying fashion. 

One operation that resolves this problem is 
the modulo operation. The modulo operation returns 
the remainder of the division of two integers, and this 
operation is particularly useful because it allows us to 
set an upper limit on the elements in a pitch pattern. 
In an e↵ort to avoid working with the modulo and 
negative numbers, we usually perform a transposition 
beforehand. For example, if we want a particular 
pitch pattern to only have the integers 0 to 3 in it, 
then we would take the modulo-4 of each number in 
the pattern. 

 

 
 
To avoid changing the overall texture of a 

composition, we usually set us modulo to a pitch that 
is exactly an octave or two above the base note so 
that pitches that get moved down simply move down 
a number of octaves. Then, when pitches become 
undesirably high, the modulo takes care of this by 
shifting them all down an octave to keep them 
manageable. 

Our primary concern with this option is that if 
we set the modulo too low, our notes do not vary too 
much, and a composition may potentially become 
monotonous over time. However, if we go in the 
opposite direction and set the modulo too high, we 
perceive very obvious jumps in pitch from very high 
to very low notes. This may be desirable in certain 
situations, but it is often not. Therefore, we more 
often utilize the following method. 

We prefer using reflections in favor of a mod 
during composition, because the reflection does not 

produce any large gaps between pitches at the 
bounds, regard- less of how large we set the range of 
pitches allowed. Additionally, the reflection can 
handle negative integers without any issues. One 
may reasonably argue that reflection of a pitch 
pattern is problematic because it may not accurately 
preserve the texture of a given pitch pattern. Of 
course, we mainly use a reflection to ensure a 
melody is playable by a musician, so if accuracy is 
ever a question, one can opt to instead have 
computer software produce the music without making 
any tweaks. 

As mentioned before, iteratively generated 
music often ends abruptly. As a result, we often 
create very simple endings for our pieces, either by 
concatenating on an additional measure consisting of 
a single note for each part, or by constructing a short 
ending that aligns with the rest of the composition. 
Either way, creating an ending is a purely creative 
endeavor, and our primary goal is to tie together a 
composition in a musically satisfying way. 

In our research, we have thoroughly 
designed and implemented our own code in Matlab 
and Java to build motifs and design substitution 
schemes. We use Matlab because it works especially 
well with matrices and iteration. Matlab also allows 
the audio output of any pitch pattern that is outputted 
from a substitution scheme and/or tweaked. If we 
want to create musical notation of our music for a 
musician to perform, we use another function we 
have created to transform numerical output into code 
readable by Lilypond, a separate programming 
language used purely for western music notation. 
The process diagrammed below is one of many ways 

to create a composition. 
 
 
 
CONCLUSION 

We have reported on several techniques we have 
developed for generating musical compositions 
algorithmically. We have used sequences of integers 
called pitch pat- terns and rhythm patterns and their 
respective operations to generate list of integers that, 
through iteration, are increasingly long and complex. 
The primary tool that we have used to iteratively 
generate these patterns is the substitution scheme, 
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which take shorter, simpler pitch and rhythm patterns, 
and transform them into longer and more complicated 
sequences. We have also presented two special 
cases of substitution schemes. We ultimately use the 
integers from pitch and rhythm patterns to create 
musical melodies. 

When synthesizing new compositions, we 
design a number of substitution schemes and short 
motifs, and our process handles the rest of the 
details. We have also taken into consideration a 
musician’s needs for sheet music, and we have 
designed a number of methods for performing 
mathematical tweaks on music to make it more 
playable. Finally, we present several examples of 
musical compositions produced by this process. 
Future work includes analyzing existing compositions 
by popular composers to see if they even loosely 
follow our algorithmically techniques. From our 
minimal exploration of this area, it seems as though 
musical compositions rarely follow our precise 
methods of generating music, but it is worth noting 
that at least the shape of many different types of 
music can be expressed using our generative 
techniques. For example, the majority Prelude in C 
from The Well-Tempered Clavier by J.S. Bach follows 
a basic (1 2 3 4 5 3 4 5) scheme until the very last 
few measures. Parts of other pieces, like the 
introduction Beethoven’s 5th, also follow schemes 
with definitive patterns, in this case following a (0-1-2-
3) scheme.  
 Other topics that we would like to explore 
would be a deeper mathematical exploration of 
rhythm patterns and division schemes. We would 
also like to implement a number of more complicated 
methods for generating music, such as “triggers” that 
alter the music after observing a certain sequence of 
elements in pitch and rhythm schemes. Finally, we 
are interested in designing an app that lets the user 
enter their own motifs, choose a set of operations, 
and then listen to the output. 
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