
H-SC Journal of Sciences (2024) Vol. XIII Spickard and Gleason

http://sciencejournal.hsc.edu/

A new way to explore history and culture: Developing an image recognition
web application for the Yup’ik
Seth E. Spickard ’261 and Sean P. Gleason2

1Department of Mathematics and Computer Science, 2Rhetoric Program, Hampden-Sydney College, Hampden-
Sydney, VA 23943

Abstract

By packaging the YOLO computer vision
model in a web-based application, we can develop
software for museums that recognizes their unique
collection of artifacts. This application creates a
nonlinear hands-on experience while ensuring the
artifacts stay preserved by keeping them out of the
hands of museum guests. With the new Starlink
internet, we can help to connect the Yup’ik youth with
their culture through an additional phone-based
method.

Keywords— Neural networks, Computer vision,
YOLO, Nanalleq, Yup’ik

Background Information

One does not simply jump into computer
science research, especially when delving into neural
networks and artificial intelligence. From the
preliminary work and educational steppingstones I
completed as an unspoken research prerequisite to
the weekly and final goals we as a research team had
to make, I will explore the steps I have taken to get to
this point and courses of action Dr. Gleason and I will
make this summer to complete our computer vision
web application.

Preliminary knowledge must be built up to
allow any aspiring computer science researcher to
develop software and train networks. I have gathered
this information foundation from my time spent in
RHET 285 and with Dr. Gleason during individual
sessions.

In my pursuit of computer science at
Hampden-Sydney, I was introduced to Dr. Gleason
who, while not a computer scientist by trade, has a
prolific knowledge of computer vision through his work
with drone and GIS research with the Yup’ik tribe in
Alaska. Dr. Gleason led a class during the 2022-2023
spring semester for those interested in joining his
research team in Alaska. The class touched on
everyone’s individual interest (photography, computer
vision, GIS mapping) with a broad focus on the
coproduction of knowledge—how we should interact
and research with the native population as to respect
and utilize their cosmology and science rather than
encroaching or promoting useless validation. The
class served to develop some of the foundation for

research but put it through our specific lens of
communicating and working with the Yup’ik tribe.

In tandem with the class, Gleason coached me
on learning Python as part of the preparation for
summer research. I needed to walk before I could run,
so before diving into computer vision, I needed to
gather a grasp of Python before the summer. Our
individual sessions focused on reviewing my work over
the past week through my explanation, his critique, and
our collaborative goal setting for the following week.
Not only did these sessions provide me with the skills
necessary to explore computer vision this summer but
they allowed me to see how Dr. Gleason and I best
work together and what it is like to work collaboratively
on programming projects more broadly.

Materials and Methods

Overall Project Description.

Our project is the development of a web
application that users can use to identify artifacts in the
Yup’ik museum collection. The web app utilizes the
You Only Look Once (YOLO) computer vision model
to identify submitted images from the user’s device [1].
The YOLO model allows the neural network to be small
enough to work on LAN servers if needed and is much
faster than other comparable computer vision neural
networks (such as the R-CNN family of models or
Deformable Part Models) [2] [3]. Once the desired
artifact is recognized, the user would be given
information about the given artifact, including a video
from an elder explaining its use, 3-D models of the
artifact, and some text detailing any additional
information.

Development Cycle.

To create the training set, the Nunalleq Culture
and Archaeology Center—the museum in Yup’ik
village of Quinhagak, Alaska—photographed multiple
angles of each item in the collection on a white
background with custom white-balance settings [4]. An
example of one such picture is shown in Figure 1.

H-SC Journal of Sciences (2024) Vol. XIII Spickard and Gleason

http://sciencejournal.hsc.edu/

Next, we removed the image backgrounds
through one of two methods. The first saw the images
imported into Photoshop. Then, the select and mask
tool was used to generate a new document containing
the artifact. The second involved writing a small Python
program to remove a certain pixel color range which
matches the background color (in this case, white) in
each image [5] [6]. The program also generated a new
document containing the artifact. The new documents
from both method were exported as a clipped .jpg file
with the snakecase syntax number_item.jpg and a
corresponding mask of the same name. The Python
program was much less tedious but was not as precise
if the colors of the background and the item were too
similar. See Figures 2 and 3 for a cropped item and its
mask. Noise images—some photographed by us and
some gotten from the HanCo project—and their masks
were created using the same tools [7] [8]. The
generation and exportation of the artifacts and the
noise images took four weeks.

With the images processed, we moved onto
generating a dataset [9]. Instead of testing the process
manually, we assembled a Python script to generate
images for our training, testing, and validating
datasets. This script pulls a random background, a
small random assortment of noise images, and a small
random assortment of artifacts out of the appropriate
folder in the file directory seen in our GitHub’s read me
text file [10]. Each object—be it noise or artifact—is
placed in the image, scaled, and slightly colored at
random. The coordinates of the artifact (written as the
X and Y values of where they are placed in relation to
the top-left corner of the image) along with the object
class or name of the artifact is generated in a text
document alongside each dataset image [11] [12]. This
“scrambling” of objects ensures a variety in dataset
images and removes weeks of tedious labor [13] [14].
The NumPy random number generator generates all
random numbers with certain specified limits for each
parameter.

The programming and troubleshooting took
roughly two weeks, and the image generation time
depends on the processing power of the computer and
the number of images one wishes to generate.

Unfortunately, we ran into certain issues in
image generation when moving from a Linux Ubuntu
machine to a Windows machine. To remedy this and
any other operating system issues, we are packaging
our application in a Docker image. Docker sets up an
operating system kernel on any machine to run
applications while minimizing OS differences [15]. So
far, our addition of Docker has taken two weeks.

In the future, we hope to finish the generation
of the synthetic dataset and begin training the YOLO
model. After training the model on the artifacts at
different angles, we will move onto validating the
model—that is, feeding the model images and seeing
how much the model has “learned.” Finally, we test it
in real-life scenarios [16]. Once the model has been
properly trained, validated, and tested with all the
artifacts, we will package the program into a Flask web
application. Flask allows our program to access a
website and fetch the information paired with each
detected image. Training, validating, and testing is
expected to take roughly two months collectively with
the web development lasting for about half a year.
During web development, we hope to compare our
YOLO model with other YOLO and computer vision
models to improve our product.

Additionally, this project has been worked on
remotely. As such, we have relied on GitHub to share
code and manage project updates and Google Colab
to coordinate work plans weekly and test sections of
code remotely. The Nalaquq GitHub will house the
programs we created to mask artifacts, generate
datasets, and train the YOLO model for any future

Fig. 1. Picture of ulu from the Cultural Center collection.

H-SC Journal of Sciences (2024) Vol. XIII Spickard and Gleason

http://sciencejournal.hsc.edu/

developmental work. The web application will be
implemented in the Nunalleq Culture and Archeology
Center.

Discussion

As touched on in the previous section, the

application would be customized to suit the Nunalleq
Culture and Archaeology Center. The application
would be used as a learning aide in the cultural center
by combining technology with preexisting teaching
methods. We hope to create a nonlinear experience
that allows users to examine the exhibits at their own
pace. Additionally, because most, if not all, of the
artifacts have emerged from the permafrost, they may
be made of wood or bear other composable materials.
To prevent the deterioration of the collection, the
application protects the artifacts while still providing
any museum goers with a hands-on experience. And it
is not just limited to the museum. New archeologists
can potentially use the tool to identify artifacts that are
already in the collection and gain knowledge of the
items they are handling.

Like any type of software development, the
ultimate goal is a working model of the application that
can be easily distributed, scaled, and used in whatever
or any environment necessary. However, a polished
and market-ready product developed by a two-person
team in the span of eight weeks is unrealistic. We do
hope to get most of the back-end work of the
application finished. Realistically, we should have a
network that can recognize a handful of artifacts from
the museum’s collection. Currently, we are starting on
preparing images and masks to train the YOLO model
to recognize endblades (similar to arrowheads) and
seal masks. Over the following two years, we hope to
incorporate the rest of the collection while developing
the front-end design work to transform the program
into a proper Flask web application.

Conclusion

Overall, I am very blessed to have the
opportunity to develop software as a freshman in
college. The development of software, especially
involving machine learning and computer vision, at this
level is almost unheard of at other universities. And this
application is not just a feather in my cap or an obscure
piece of technology with a buried article to accompany
it. I am using the skills I have garnered to build tools
that will immediately be put into place to assist others
in their pursuit of education. Additionally, this process
is opening my eyes to the world of research and
development in the STEM fields, preparing me for a
future in computer science.

Acknowledgements

The authors would like to thank the Nunalleq

Culture and Archaeology Center in Quinhagak, AK for
their support and access to the photographs of their
artifact collection and the Hampden-Sydney Office of
Undergraduate Research for their funding of the
project.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick and A. Farhadi,

"You Only Look Once: Unified, Real-Time Object
Detection," 9 May 2016.

[2] H. Zanini, "Custom YOLOv7 Object Detection with
TensorFlow.js," 28 March 2023. [Online].
Available:
https://towardsdatascience.com/training-a-
custom-yolov7-in-pytorch-and-running-it-directly-
in-the-browser-with-tensorflow-js-96a5ecd7a530.

[3] J. Li, J. Zhang, S. J. Maybank and D. Tao, "Bridging
Composite and Real: Towards End-to-end Deep
Image Matting," 27 October 2021.

[4] S. Kench, "What is White Balance — How it Works
and Why It Matters," 5 June 2022. [Online].
Available:
https://www.studiobinder.com/blog/what-is-white-
balance-
definition/#:~:text=White%20balance%20is%20a
%20camera,so%20this%20helps%20correct%20i
t..

[5] T. Kummarikuntla, "Blue or Green Screen Effect
with OpenCV [Chroma keying]," 1 March 2019.
[Online]. Available:
https://medium.com/fnplus/blue-or-green-screen-
effect-with-open-cv-chroma-keying-
94d4a6ab2743.

[6] L. Block, A. Raiser, L. Schon, F. Braun and O.
Riedel, "Image-Bot: Generating Synthetic Object
Detection Datasets for Small and Medium-Sized
Manufacturing Companies," Procedia CIRP, vol.
107, pp. 434-439, 2022.

[7] T. Vorenkamp, "Understanding Exposure, Part 1:
The Exposure Triangle," 26 January 2022.
[Online]. Available:
https://www.bhphotovideo.com/explora/photograp
hy/tips-and-solutions/understanding-exposure-
part-1-the-exposure-
triangle#:~:text=%E2%80%9CExposure%20Trian
gle.%E2%80%9D-
,Exposure%20Triangle,(film%20or%20digital%20
ISO)..

[8] C. Zimmermann, M. Argus, and T. Brox,
“Contrastive Representation Learning for Hand
Shape Estimation,” in Pattern Recognition, C.
Bauckhage, J. Gall, and A. Schwing, Eds., Cham:

H-SC Journal of Sciences (2024) Vol. XIII Spickard and Gleason

http://sciencejournal.hsc.edu/

Springer International Publishing, 2021, pp. 250–
264.

[9] J. Brownlee, "A Gentle Introduction to Object
Recognition With Deep Learning," 27 January
2019. [Online]. Available:
https://machinelearningmastery.com/object-
recognition-with-deep-learning/.

[10] S. Gleason, S. Spickard, “Nalaquq/nanalleq_cv,”
[Online]. Available:
https://github.com/Nalaquq/nunalleq_cv.

[11] A. P, "How to Create Synthetic Dataset for
Computer Vision (Object Detection)," 10 January
2022. [Online]. Available:
https://medium.com/@alexppppp/how-to-create-
synthetic-dataset-for-computer-vision-object-
detection-fd8ab2fa5249.

[12] S. Borkman, A. Crespi, S. Dhakad, S. Ganguly, J.
Hogins, Y.-C. Jhang, M. Kamalzadeh, B. Li, S.
Leal, P. Parisi, C. Romero, W. Smith, A. Thaman,
S. Warren and N. Yadav, "Unity Perception:
Generate Synthetic Data for Computer Vision," 19
July 2021.

[13] M. Walia, "Overfitting in Machine Learning and
Computer Vision," 31 October 2022. [Online].
Available: https://blog.roboflow.com/overfitting-
machine-learning-computer-vision/.

[14] dewangNautiyal, "ML | Underfitting and
Overfitting," 5 June 2023. [Online]. Available:
https://www.geeksforgeeks.org/underfitting-and-
overfitting-in-machine-learning/.

[15] Docker Docs, "Docker Overview," [Online].
Available: https://docs.docker.com/get-
started/overview/.

[16] E. d'Archimbaud, "Training, Validation and Test
Sets: How To Split Machine Learning Data," 2023.
[Online]. Available: https://kili-
technology.com/training-data/training-validation-
and-test-sets-how-to-split-machine-learning-data.

