by Travis Goodloe ’16
I have a summer research internship at the Center for Reproductive Medicine here in Mobile working with Dr. George Koulianos, MD and Dr. Suzanne Degelos, Ph.D. The Center specializes in many facets of reproductive medicine including several methods of in vitro fertilization as well as intrauterine insemination (IUI) in addition to general reproductive healthcare for couples and patients facing reproductive difficulties or infertility. My internship involves working as a lab tech with lab director Dr. Degelos by assisting in egg retrieval and embryo transfer procedures along with intracytoplasmic sperm injection (ICSI), which is the method used to fertilize eggs in vitro in the lab. Along with my lab tech responsibilities, I have been given my own project involving some data analysis and bioinformatics in order to help the Center publish an abstract that they have been trying to get out for several months now.
In the IVF world, a new technology known as physiological intracytoplasmic sperm injection (PICSI) has emerged since about 2012 which utilizes a special dish coated in media containing the protein hyaluronan. All normal morphological and functional sperm have hyaluronan binding receptors on their heads while eggs possess hyaluronan protein on their outer surface that bind during natural fertilization. Thus, PICSI dishes possess hyaluronan that allows for sperm binding in the dish and thus an embroylogist to select the best quality sperm for injection. My project has included analyzing all the patient records since 2012 when PICSI was first used here at the Center and comparing pregnancy outcomes to ICSI patients from the same time period. Many fertility clinics across the country are moving to this new method but unfortunately the sample size here at the Center as well as in other studies from around the country are not large enough to produce statistically significant results that prove PICSI is more effective and provides higher clinical pregnancy rates and more importantly successful delivery rates than standard ICSI.
To learn more about the science behind my project, check out http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545641/