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INTRODUCTION 
 

As variable selection has been combed over 
extensively by many statisticians, it seemed 
necessary to change its flavor by experimenting with 
it in a survey sampling setting. This is a realm where 
far less progress has been made in regard to variable 
selection techniques. Issues such as non-response 
make selecting variables in this setting far more 
troublesome than with a complete given data-set. 
While non-response, an issue that commands a 
substantial amount of energy from the U.S. Census 
Bureau, was not a focal point of my project. The 
objective is to set up the framework to cope with it in 
future endeavors. 
 The framework is the simulations that created 
in R, a statistical programming platform. A major 
motivation for undertaking this project was to learn 
how to effectively code a working simulation, and it 
commanded the majority of my time. The importance 
of writing simulations is that they can easily be 
modified to accommodate and analyze real data. 
Benefits of data analysis skills can be reaped in a 
broad spectrum of mathematical and both hard and 
soft scientific subjects.  
 Specifically, these simulations create a 
design matrix comprised of values of all independent 
variables for each population unit. This is essentially 
a catalogue of the population in question with a full 
set of data comprising of values for any variable we 
could conceive of using. The design matrix multiplied 
by a user selected vector of parameters to weight the 
variables, with the addition of an error term, yields a 
vector of dependent values. The dependent values 
correspond to a single real quantity/attribute that the 
statistician attempts to estimate using a variety of 
correlating and non-correlating variables. Using this 
simulated data, parameter estimation, as well as 
variable selection, can be attempted in a variety of 
ways, and because of the nature of simulations, the 
real parameter values are known and can be used to 
verify the effectiveness of a given parameter 
estimation technique.  

Knowledge and control of true parameter 
values, as occurs in the simulation setting, is 
extremely important for experimenting with variable 
selection. Ideally, one would want a reasonable 
variable selection algorithm to pick variables that are 
meaningful, i.e. variables that correspond to non-zero 
parameter values, and therefore influence the 

dependent variable. Whether or not a program is 
doing this successfully can be easily verified. This is 
not true with real data where the true parameters 
values are unknown.  
 The addition of survey sampling to the mix 
allows one to ask, and answer, the question of 
whether variables can be effectively selected on a 
consistent basis without access to the entire 
population (i.e. the entire design matrix), or even a 
significant fraction of it. One may also ask which 
variable selection techniques work best when dealing 
with moderate to large samples, or which parameter 
estimation techniques are most effective in this 
setting.  
 Theoretical variance formulas have been 
derived for the estimation of a dependent variable 
when we know values of independent values of only 
a sample of the population. In simulation, we can take 
many samples of the same population where we 
know the value of the dependent variable in question 
and evaluate both the mean and the variance of the 
resulting dependent variable estimations produced by 
the simulation. These quantities can then be 
compared with the theory to evaluate its validity.  
 The project investigates the relationship 
between ordinary least squares and ridge regression 
parameter estimation when dealing with survey 
samples. It is tested whether or not general theory of 
the ridge regression parameter estimator applies to a 
survey sampling setting when compared to the 
ordinary least squares estimator. The project also 
performs variable selection using two well-known 
selection criterion, AIC (Akaike Information Criterion) 
and BIC (Bayesian Information Criterion), as well as a 
few modified versions of the two and one more 
criterion of my own creation relating to ridge 
regression. 
 

 
Definitions 
 For the purposes of this paper, I will define 
my shorthand. 
 
N = total number of population units (example. 
number of citizens in the U.S.) 
n = sample size  
p = total number of variables in the design matrix 
q = number of meaningful variables 
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𝑞 = number of estimated meaningful variables 
ß = p-vector of user selected parameters 
𝛽 = p- (or q- if post-variable selection) vector 
estimated parameters 
e - error term; N-vector of normally distributed values 
about mean 0 
X = Nxp design matrix of randomly generated values; 
the first column is always 1’s  
Y = N vector of dependent values 

	
  
Parameters	
  Estimation 
 

As previously outlined in the introduction, my 
dependent values are generated by multiplying an 
arbitrary design matrix by a p-vector of user selected 
parameters with the addition of an error term: 
𝑌 = 𝑋𝛽 + 𝜖            (1) 

The dataset itself is just the Y and the X 
values, not the parameters or the error term. Note 
that the first value of ß is the intercept the same way 
b is the intercept in the equation of a line (y = mx + b). 
Think of the remaining p-1 ß values as “m” in the 
equation of a line. The intercept term creates the 
necessity for the first column of the design matrix to 
consist of only 1’s such that the intercept term is 
preserved to be added to each individual Y value.  
 The immediate application of this data set is 
to recover the original parameters by a parameter 
estimation technique. To illustrate this more 
thoroughly, let’s consider a modified equation of a 
line: 𝑦 = 𝑚𝑥 + 𝑏 + 𝜖, where all underlined values are 
N-vectors (2). 

Plotting y and x will result in a scatter plot of 
points for which the line of best fit is approximately y 
= mx + b. “m” is the only parameter here to be 
estimated and it can be sufficiently accurately 
estimated by utilizing simple linear regression. The ß0 
and ß1 that minimize the following equation are the 
ordinary least squares intercept and slope estimates 
for the simple linear regression model. 

𝑓(𝛽!,𝛽!) = [𝑌! − (𝛽! + 𝛽!𝑋!]!  (3)
!

!!!

 

In multiple linear regression, where X no longer an N-
vector, but an Nxp design matrix and m is not a constant 
but a p-vector ß, parameter estimation is similar to simple 
linear regression. The ß values (ß0, ß1,.., ßp) that minimize 
this equation are the ordinary least squares intercept and 
parameter estimations for the multiple linear regression 
model. 

𝑓(𝛽!,𝛽!,… ,𝛽!) = [𝑌! − (𝛽! + 𝛽!𝑋!,! +⋯+𝛽!𝑋!,!)]!  (4)
!

!!!

 

This is the ordinary least squares method of 
parameter estimation on a given data set. In the R platform, 
this very simple - the “lm” function will minimize the above 
equation; entering a summary command will reveal the 

parameter estimates as well as yield other relevant 
information such as p values, f-statistic, etc.  

Other methods for parameter estimation have 
been proposed and used selectively in the statistics 
community besides ordinary least squares. The most 
interesting method is ridge regression. It was designed to 
lower variance due to collinearity in parameter estimation. 
Consider the equation of 𝛽 {ordinary least squares: 

𝛽!"# = (𝑋𝑋′)!!𝑋!𝑌                              (5) 
This formula becomes quite messy when multiple 

variables (columns of X) are collinear; X’X becomes nearly 
singular. The values obtained from inverting it vary very 
widely because of the near singularity. Ridge regression 
aims to solve this problem by adding a “ridge” to X’X - this 
“ridge” is the result of the addition of a diagonal constant 
matrix to X’X. Let this diagonal matrix be C such that the 
diagonal entries are a constant and the rest are equal to 
zero. We now have: 

𝛽!"#$% = (𝑋𝑋! + 𝐶)!!𝑋!𝑌                              (6) 
Unlike 𝛽!"#, 𝛽!"#$% is biased such that it tends 

to underestimate parameter values. However, the 
improvement in variance offsets the cost of bias. The 
Existence Theorem states that there will always exist 
a C such that the variance of 𝛽!"#$%will be less than  
𝛽!"# (Breheny). 
 

	
  
Dependent	
  Value	
  Total	
  Estimation	
  Techniques 
 The reason I’ve painstakingly gone over the 
process of parameter estimation is that it is essential 
for total dependent (Y) value estimation. With access 
to dependent values of an entire population, one 
could simply sum the dependent values to obtain the 
total. This is not so in the survey sampling world. 
 The general regression Y total estimator has 
been a focal point of my project: 𝑡!,!"#! = 𝑋′!"!𝛽!"#, 
where 𝑋!"! is p-row vector of the sum of the columns 
of X (7). The ridge regression Y total estimator is 
incorporated as follows: 𝑡!,!"#$% = 𝑋′!"!𝛽!"#$%(8). 
 Equations (7) and (8) assume one has 
access to the entire population and therefore is not a 
true estimator of Y total since there is no missing 
information to keep the “estimator” from reproducing 
the exact value of Y total. In the survey sampling 
realm, one has access to only a small chunk of the 
population, and thus a true estimator is used to 
attempt to find the correct value of Y total. To make 
equations (7) and (8) into estimators that can be 
appropriately used with a sample of a larger dataset, 
simply multiply each equation by (N/n) in order to 
scale up the estimate to the right order of magnitude. 

𝑡!,!"#! = (
𝑁
𝑛
)𝑋′!"!𝛽!"#              (9) 

𝑡!,!"#$% = (
𝑁
𝑛
)𝑋′!"!𝛽!"#$%              (10) 

A key goal of the project was to evaluate the validity 
for a “variable model” (i.e. we don’t know what the 
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model will be before variable selection) of a 
theoretical variance formula of the 𝑡!,!"#! values for 
fixed models that we call the naive variance. 
𝑉!"#$% =

!!

!
1 − !

!
𝜎!![1 + 𝑡𝑟(𝑋^′  𝑋)!!𝑆!,!! ]      (11) 

This was accomplished by taking “R” 
samples of the same simulated dataset and 
computing 𝑡!,!"#! for each sample. The empirical 
mean was compared to the true Y total value and the 
empirical variance was compared to𝑉!"#$%. To do this 
in the most realistic fashion possible, variable 
selection must be executed before 𝑡!,!"#! 
computations can take place. First, a statistician 
would select a smaller model by filtering out useless 
variables through a variable selection technique. Note 
that the naive variance formula does not depend on 
how many variables are involved in the Y total 
estimation. 

	
  
Variable	
  Selection	
  Criteria 

Statisticians must devise ways of quantitative 
methods of comparing models to one another to 
determine which model is better. When programming 
a variable selection program, one must utilize a 
selection criterion to label models with a numerical 
value such that one can be picked over the rest. 
Generally RSS (Residual Sum of Squares) is a 
decent measure of goodness of fit, however, it will 
improve with each additional variable added to the 
model. That’s not a good thing if the variable had 
nothing to do with the dependent values; the 
statistician is now fitting to noise. Good selection 
criterion for this reason have penalty terms for adding 
additional variables. This penalty term attempts to 
weed out the noise and only allow valuable variables 
into the final selected model. The selection criterion 
used in this project are AIC (Akaike Information 
Criterion), BIC (Bayesian Information Criterion), and 
several blends of the two as well as a criterion of my 
own creation.  
 All information criterion operate the same 
way - the selection criterion is calculated for a number 
of models; the model selected is the model with the 
lowest value of the selection criterion.  
 Each criterion is calculated by a different 
formula, each with its own distinct advantages and 
disadvantages. The formula for AIC is as follows: 
 𝐴𝐼𝐶 = 𝑛  𝑙𝑜𝑔𝑅𝑆𝑆 + 2(𝑝 + 1) (12) 

Notice that the first term of the formula simply 
rewards goodness of fit; the better the fit, the lower 
the residual sum of squares. The second term is a 
penalty term that grows with each added parameter. 
“p” in this formula isn’t necessarily the total number of 
candidate variables from the original dataset, but the 
number of variables in the model for which the AIC is 
being calculated. It is not quite accurate to label this 
“p” as q since we have not determined that the model 

in question is in fact the best model, which would 
ideally have q variables. The formula for BIC is very 
similar to AIC: 

      𝐵𝐼𝐶 = 𝑛𝑙𝑜𝑔𝑅𝑆𝑆 + 𝑝 + 1 ln  (𝑛)  (13) 
The only formulaic difference between AIC 

and BIC is the harshness of the penalty term for 
adding additional variables to the candidate model. 
AIC uses a constant value of 2, whereas BIC uses 
the natural log of the sample size. When I refer to 
blends of AIC and BIC, I simply mean letting the 
penalty term for adding variables take on values that 
range roughly between those of AIC and BIC. 

As it would be correct to expect that BIC with 
its harsher penalty term tends to allow selection 
processes to pick fewer variables as the cost of 
adding another variable is always high. Naturally, BIC 
selection processes will almost never result in a 
model with a noisy variable at the moderate cost of 
perhaps losing out on a couple of valuable variables. 
AIC processes will generally result in a model with all 
valuable variables at the cost of having a couple 
noisy variables tag along. 

	
  
Variable	
  Selection	
  Procedures 

The processes by which the aforementioned 
variable selection criterion are used are variable 
selection procedures. Three main popular variable 
selection procedures are forward selection, backward 
selection, and stepwise selection.  

In a forward selection procedure, the 
algorithm will begin with an initial model, generally 
Y~1 or any other arbitrary constant and calculate the 
selection criterion for this model. Next the algorithm 
will select the variable with the greatest correlation to 
Y which will minimize the selection criterion from the 
set of all one-variable models. The next added 
variable will have the greatest partial correlation to 
the one variable model, thereby again minimizing the 
selection criterion from the set of all two-variable 
models. This process of adding one variable at a time 
will continue until the selection criterion can no longer 
be lowered by adding another variable. At this point 
the algorithm stops and whatever variables have 
been selected are the variables that comprise the 
final model.  
 Backward selection is simply the opposite of 
forward selection. Instead of beginning with no 
variables, we begin with the full model. Variables are 
subtracted one at a time until the selection criterion 
can no longer be improved by removing a single 
variable. The selection algorithm stops and the 
remaining variables become the constituents of the 
final model.  
 Stepwise selection blends forward and 
backward selection together. The initial model is 
arbitrary. Each iteration of the selection algorithm can 
either add or subtract a single variable from the 
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model; it will decide to add or subtract (and which 
variable) by calculating the selection criterion of the 
model resulting from all possible single variable 
additions and subtractions and then pick the move 
that results in the largest improvement of the 
selection criterion. The algorithm only stops when 
neither addition nor subtraction of a single variable 
can improve the selection criterion of the model. This 
procedure can take a lot of time and computing power 
due to the difficulty of arriving at the “perfect” model 
such that neither subtraction nor addition of variables 
improves it.  

All three of these selection procedures are 
known as greedy algorithms because they 
add/subtract the variable that improves the selection 
criterion the most in a single step. These algorithms 
are fairly simple to write and execute, however, the 
best model isn’t always found by a greedy algorithm. 
Sometimes smaller initial improvements lead to larger 
improvements later and a better final model. For my 
purposes, the simplicity of the greedy algorithm and 
the adequate results made its use appropriate. 

	
  
The	
  Simulation 

Now that all the background is covered, I can 
begin to describe what it is exactly that I did to 
answer the questions I’ve previously mentioned.  
 I first created a dataset with a design matrix 
such that the first column is all 1s and the rest of the 
matrix is a collection of randomly generated numbers. 
The user selected p-vector beta was comprised of 
several 1s, .1s, -.1s, and 0s. I used variety of beta 
values to make it possible to evaluate my variable 
selection procedures based on how well they pick up 
variables with non-zero parameters as well as discard 
variables with corresponding parameter values of 0. I 
plugged this design matrix and beta into equation (1) 
to yield the dependent values.  
 Now to make this a study of a simulated 
survey sampling environment, I took 100 samples of 
size n from a data frame consisting of the Y values 
and X values without the column of ones. This is 
equivalent to picking n Y values and the 
corresponding n rows of the design matrix. I took 100 
samples instead of one so that selection processes 
and parameter estimation could be done 100 times 
instead of one each time I ran my simulation.  

For each of the 100 samples, I ran a canned 
forward selection program to yield the variables that 
the program found most valuable. Interestingly, the 
number of variables selected by the program was not 
constant over all 100 samples. The number of 
selected variables actually varied quite a bit. See 
Appendix C 1.1 for an example of this distribution. To 
estimate q, the number of meaningful variables, I 
allowed  𝑞 to equal the floor of the average number of 

variables selected over the 100 samples. The 𝑞  most 
commonly picked variables were logically nominated 
as the constituents of the final model.   

I ran both ordinary least squares and ridge 
regression parameter estimation programs on the 
resulting variables for each of the 100 samples, the 
empirical variances of the average of those results 
may be found in Appendix F 1.1. With the parameter 
estimations, I was able to estimate the total Y values 
by equation 9 and 10 also 100 times, their means can 
be found in Appendix F 1.1 and a histogram of the 
100 𝑡!,!"#!values from a complete execution of the 
simulation with an overlaid normal distribution can be 
found in Appendix D 1.2.  

To gather data useful for answering 
questions about how sample size different selection 
criteria influence variable selection in a survey 
sampling setting, I had to run my program 15 different 
times varying the sample sizes and selection criteria. 
All results can be found in Appendix F 1.1. Note that k 
is the weight of the penalty term for selecting 
additional variables for a model (2 for AIC, log(n) for 
BIC). I let k take values in the set {2, 3, 4, 5, log(n)} 
and I let n take values in the set {200,500,800}. All 
possible 15 combinations of these n and k values 
were tested and recorded. 

	
  
A	
  Novel	
  Penalty	
  Term 

Dr.Slud gave me the idea in one of his talks 
to try a non-constant penalty term; specifically what 
he said was to try to combine AIC and ridge 
regression to create a novel penalty term. Ridge 
regression operates by penalizing large ß values in 
order to minimize variance, however, it is because of 
this method that ridge regression produces biased 
estimates (Breheny). It always underestimates 
because it is designed to discriminate against the 
large ß values.   

I wanted to add a penalty term to the 
traditional AIC formula for two reasons - first to 
decrease the number of selected variables to create a 
simpler, more economical model, and second to 
decrease the variance of the resulting population total 
estimates. My penalty term needed to be designed to 
find the estimated absolute values of all parameters 
in the candidate model, sum them, and add them to 
the AIC value of the candidate model. This 
theoretically makes it harder to select additional 
variables, especially heavily weighted variables.  

To do this, inside of the forward selection 
function, the model parameters would need to be 
estimated for every iteration in order to add the 
correct penalty term to each candidate model. This 
could not be done using a canned selection program 
as I had been using previously. I was forced to write 
my own. In Appendix C 1.1 is a table of the results of 
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this function being executed several times without the 
extra penalty term with the purpose of convincing the 
readers that it produces comparable results to the 
canned selection program. 

 
Conclusion      

The GREG estimator really is unbiased:  
In Appendix D 1.1, “bias tygreg” refers to the 

average GREG y total estimation from all 100 
samples taken in a particular execution of the variable 
selection program. As you will see in Appendix A, 
“Bias tygreg” does not depend on k (A 1.1), or n (A 
1.2). Furthermore, the values of “Bias tygreg” look to 
be approximately normally distributed about mean 0, 
and standard deviation ~200. To test this intuition, I 
plotted a histogram of all “Bias tygreg” values from all 
scenarios with an overlaid normal distribution of the 
empirical mean/standard deviation of the “Bias 
tygreg” values (~3, 222) (A 1.3). I can do this 
because of the lack of dependency of “Bias tygreg” 
on n and k, the only changing user controlled 
parameters of the simulation. The normal distribution 
does not fit perfectly, but keep in mind that there were 
only 15 values of “Bias tygreg” to draw from. Also 
note that the standard deviation is relatively very 
small as the real population total is on the order of 
80,000. 

I also wished to evaluate the accuracy of the 
theoretical naive variance of tyGREG-hat, because it 
does not depend on the selection criterion, I simply 
recorded empirical standard deviations of tyGREG-
hat to compare to the theoretical calculations for each 
n value (200,500,800). These comparisons can be 
found in Appendix D 1.1. 

The ridge regression estimator is biased: 
In regard to the same 100 surveys as 

explained above, “Bias ty ridge” in Appendix D 1.1 
refers to the bias of the average of all surveys in a 
particular execution of the variable selection program. 
Ridge regression theoretically yields smaller 
variances than using ordinary least squares at the 
price of adding bias to the estimator (citation). 
Theoretically ridge regression should underestimate 
Y totals as well as parameter values (citation). Like 
“bias tygreg,” “Bias ty ridge” does not depend on n or 
k (see Appendix A 1.4 and A 1.5 if you need 
convincing). Therefore, it makes sense to average all 
values obtained over executions of the forward 
selection program in all user selected scenarios to 
deduce the typical y total estimation bias when using 
ridge regression to estimate parameters. Unlike the 
average of “bias tygreg” which was essentially 0 (3 is 
close enough to 0 when referring to totals on the 
order of tens of thousands), the average of “Bias ty 
ridge” was -834 with a standard deviation of 262. It is 
worth noting that each and every discrete value of 
“Bias ty ridge” was negative. It is difficult to explain 

why the standard deviation using ridge regression is 
actually higher than using ordinary least squares 
through general regression estimation as it should 
theoretically be opposite. However, the difference is 
very slight and is likely largely attributed to the small 
sample size of just 15 values for each estimation. 

Larger sample sizes lead to more selected 
variables: 

Each and every time I increased my survey 
sample size (by increments of 300) while keeping the 
selection criterion constant, at least one more 
variable was selected. When one looks at the AIC 
formula, one would be inclined to intuit that since the 
penalty term is made harsher by a larger n, fewer 
variables, not more, would be selected. However, as 
that is not the case, I hypothesize that while the 
penalty term is harsher, it is harsher for all models 
which does not lead to any differences in selection, 
but it is possible that the larger n values groups AIC 
values for models more closely together thereby 
making it “easier” for the program to squeeze in an 
extra variable before minimizing the AIC. See 
Appendix B 1.1,1.2, and 1.3 for graphs related to the 
above material. 

Theoretical (Naive) Variance of the𝑡!,!"#! 
estimator is constant across all large sample sizes up 
to N. 

In Appendix C 1.1, you will see the theoretical 
standard deviations of the 𝑡!,!"#!estimators 
calculated from input parameters of each execution of 
the forward selection program. While at first the graph 
can appear to be of just averages of the𝑡!,!"#! 
standard deviations across all survey samples of a 
given run, notice that these values are actually 
overlaid on top of the theoretical𝑡!,!"#!standard 
deviations of the whole population. The standard 
deviations are on the order of hundreds whereas the 
differences between them are single digits. 

Ridge regression parameter estimation is as 
good as advertised. 

Whereas the variance of “Bias ty ridge” 
wasn’t as good as we would theoretically suppose it 
to be, the accuracy of the ridge parameter estimator 
(“beta hat ridge”) was better than the least squares 
estimator as predicted. Referring to Appendix D 1.1, 
one can see that the ridge parameter estimator was 
at least as good, if not up to four times better, than 
the least squares estimator in every scenario studied. 
While the ridge estimator is biased, it does do a much 
better job of retrieving the original parameters. 

The ridge regression inspired penalty term 
decreases the number of selected variables for a 
given sample size: 

The penalty term did result in selection of one 
or more fewer variables for each discrete sample 
size, however, it did not lower the variance of the Y 
total estimations (it didn’t raise it either, all variances 
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lie in line with those produced by processes not 
involving the extra penalty term). As expected, when I 
fed the 𝑡!,!"#!    estimator function the results of the 
ridge regression inspired forward selection process, it 
became biased and underestimated the Y total every 
time the program was executed. This bias was very 
minor, about a fifth of the mean of “Bias ty ridge.” In 
Appendix D 1.2, 1.3, and 1.4 one can find the graphs 
from Appendix B (1.1, 1.2, 1.3) modified to include 
the selection processes including the extra penalty 
term. Note that k values are approximate as my 
program was designed to not hold k constant. 

 
Appendices      
Appendix A: 
A1.1 

 
A1.2 

 
A1.3 

 
 
 
 
A1.4 

 
A1.5 

 
Appendix B: 
B1.1 
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Appendix C: 
C1.1 

 
C1.2 

 
C1.3 

 
 
 
 
 
 
 
 
 
 
 
Appendix D: 
D1.1 

 
D1.2 
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